
CSI 401 (Fall 2025)
Numerical Methods

Lecture 19: Course Review

Chong Liu
Department of Computer Science

Nov 24, 2025

Why learn Numerical Methods?

• Motivated by
• most real-world problems in science, engineering, and data science cannot be

solved exactly using closed-form solutions.
• For example,

• Many equations, such as nonlinear systems, high-dimensional integrals, and differential
equations, either lack analytical solutions or are too complex to solve by hand.

• Advantages:
• Providing systematic algorithms to approximate these solutions with

controllable accuracy and efficiency
• Bridging the gap between mathematical theory and computer implementation
• Enabling the simulation and prediction of complex problems—such as climate

modeling, structural design, or machine learning
• Ensuring stability, convergence, and error control!

2

Topics of Numerical Methods covered

• Source of numerical errors
• Asymptotic notations and floating

point arithmetic
• Review:

• Linear algebra, Python, Matlab,
LaTeX

• Linear systems:
• Direct linear equations solvers
• Eigenvalues and eigenvectors
• Iterative linear equations solvers
• Conditioning of linear equations

3

• Numerical interpolation
• Data fitting and regression

problems
• Nonlinear equations solvers
• Optimization methods
• Numerical integration and

differentiation

Sources of numerical errors

• Data are always noisy
• Discussion: Any example in your

mind?
• Aircraft fuselage design

• Computers can only handle
discrete data
• Think about data structure: string,

array, tree, …

• No measuring device is perfect
• Discussion: Any example in your

mind?
• Exact rainfall of Albany, NY in July

2025? No way!
4

Types of
errors

5

One way is to take the absolute difference

• Definition of absolute error:
• |𝑢 − 𝑣|

• It’s so simple, but it has some problems:
• Suppose we try to figure out how much air passes through a Boeing 737

engine per minute during the flight.
• The true answer is 120,000 pounds.
• Your solution shows 119,000 pounds, so absolute error is 1,000 pounds.

• Discussion: You missed 1,000 pounds? Are you doing a good job?

6

Another way to measure error

• Definition of relative error:

•
𝑢−𝑣

𝑢
• note 𝑢 is the true number

• Discussion: What’s the relative error in previous example?
• Suppose we try to figure out how much air passes through a Boeing 737

engine per minute during the flight.
• The true answer is 120,000 pounds.
• Your solution shows 119,000 pounds.

7

Asymptotic notations

• Used to compare
the growth of two
functions 𝑓(𝑥) and
𝑔(𝑥) as 𝑥 tends to
some limit point 𝑥0.

• Discussion:
• 𝑓 𝑥 = 𝑥2, 𝑔 𝑥 = 𝑥 .

Which notation
shall we use?

8

Asymptotic notations

• Additionally, we say that 𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → 𝑥0 if there is
some positive constant 𝐶 such that

•
𝑓(𝑥)

𝑔(𝑥)
⩽ 𝐶.

• Thus, the 𝑂(·) notation means that 𝑓(𝑥) is asymptotically upper
bounded by 𝑔(𝑥).

• We also say that 𝑓(𝑥) = Ω(𝑔(𝑥)) if 𝑔(𝑥) = 𝑂(𝑓(𝑥)).
• We say that 𝑓(𝑥) = Θ(𝑔(𝑥)) if 𝑓(𝑥) = 𝑂(𝑔(𝑥)) and 𝑓(𝑥) =

Ω(𝑔(𝑥)).

9

Properties of asymptotic notations

• The above theorem allows us to simplify expressions asymptotically. E.g., as 𝑥 → ∞

• 4𝑒𝑥(sin 𝑥 + 5) + 3𝑥 = Θ(𝑒𝑥(sin(𝑥) + 5)) = Θ(𝑒𝑥),

• where the first equality is because 𝑥 = 𝑜(𝑒𝑥sin(𝑥)), and the second equality is
because 0 ⩽ |sin(𝑥)| ⩽ 1.

• Note that all of this can be verified by looking at ratios of functions, as in the
definition of the notation.

10

Properties of polynomials

11

Machine arithmetic - Decimal expansion

• Take 316.1415 for example:

• Any real number x can be written as

• In-class exercise: Decimal expansions for (1) -2, (2) 𝜋.

12

Machine arithmetic - Binary expansion

• Similar to decimal expansion, every real number x has a binary
(i.e., base B = 2) expansion:

• In class exercise: consider a number , what’s
the binary expansion of it?

13

Decimal to binary conversion

• Every number has a decimal and a binary expansion. Given a
decimal expansion for a number 𝑥, how do we determine its
binary expansion?

• We set 𝑦 = 𝑥 and repeatedly do the following:
• 1. Compute the maximum integer 𝑗 such that 𝑦 ⩾ 2𝑗.
• 2. Output 𝑗.
• 3. Compute 𝑦 = 𝑦 − 2𝑗 and go to step 1.
• The algorithm terminates when 𝑦 = 0.

14

Scientific notation

• Our ultimate goal: come up with a reasonable binary
representation of numbers, suitable for storage and manipulation
on a computer.
• Why not just store the binary expansion? The trouble with this is that large

numbers can take up a lot more space than smaller numbers, even if they
don’t have many nonzero digits.

• For instance, consider the following very large number (Avogadro’s
constant) that arises in chemistry:

• How can we store this number in a compact way?

15

Scientific notation

• In-class exercise: scientific notations of 4125, 40.125, 4.125
16

How data are stored? Floating point system

• Discussion: what’s the number in [0|0100000…|…0000011]?
• Solution: -(1+0.25)*8=-10.

17

Linear systems (linear equations)

• An example of linear systems
• Any linear system can always be rewritten in matrix form

• More generally, 𝐴𝑥 = 𝑏
• 𝐴 is an 𝑚 × 𝑛 matrix
• 𝑥 is an 𝑛-dimensional vector
• 𝑏 is an 𝑚-dimensional vector

• Problem: given 𝐴 and 𝑏, how can you solve 𝑥?
18

Gaussian elimination

• Rewrite the problem in augmented matrix form
• Original augmented matrix and manipulated augmented matrix

• Elementary row operations:
• 2nd line = 2nd line – 3 * 1st line [0 -1 -2 -10], done!
• 3rd line = 3rd line – 4 * 1st line [0 -6 -2 -20]
• Discussion: how to proceed?
• 3rd line = 3rd line – 6 * 2nd line [0 0 10 40], done!

19

Gaussian elimination

• Key idea:
• Use elementary row operations to make A become a right-triangular

matrix
• So that you can sequentially solve the linear systems bottom-up!

20

Gauss-Jordan Elimination: Beyond Gaussian
Elimination
• Consider this linear system:

• Yes! It’s Gauss-Jordan Elimination.
• Key idea:

• Use elementary row operations to make A become an identity matrix
• So that you can directly read the results!

21

LU decomposition

• 𝐴 = 𝐿𝑈
• 𝐿 is a lower triangular matrix, 𝑈 is a upper triangular matrix
• Note this decomposition may not be unique

• In-class exercise:
• Find an LU decomposition of

• Solutions:

22

Partial pivoting prevents this issue

• How does partial pivoting work?
• Swap rows to make pivot have the largest absolute value in its column.

• Why does it work?
• Avoid dividing by tiny numbers, reduces relative error, and makes LU

numerically stable for most matrices.

23

Another example of partial pivoting

24

Eigenvalues and eigenvectors

• Definition:
• For an 𝑛 × 𝑛 matrix 𝐴, an eigenvector 𝑣 of 𝐴 is a nonzero vector such that

there exists some 𝜆 ∈ 𝑅 satisfying
• 𝐴𝑣 = 𝜆𝑣.

• Discussion:
• What’s the dimension of 𝑣?
• Is 𝐴𝑣 a matrix or a vector?
• Is 𝜆𝑣 a vector or a real number?

25

Goal: Find eigenvectors and eigenvalues of a
square matrix 𝐴
• Discussion: How to find eigenvalues by hand?

• Reviewed in Lecture 3.

• Work with the characteristic equation for the eigenvalues 𝜆:

• But 𝑣 is a nonzero vector, so det(𝐴 − 𝜆𝐼) = 0.

26

Power method: Computing the eigenvalue of
largest modulus and its corresponding eigenvector

• Works for diagonalizable matrix only. All symmetric matrices are
diagonalizable.

• Algorithm:
• Start with an initial nonzero vector 𝑤(0)

• Run in K iterations

• Then your final 𝑤(𝐾) ≈ 𝑣1
• And 𝜆1 = 𝐴𝑣1/𝑣1

27

Summary

• Power method is to used to calculate eigenvalue and eigenvector
of a matrix

• In an iterative way
• Stopping criterion: number of iterations, relative error

• Works for diagonalizable matrices only
• All symmetric matrices are diagonalizable

• Only finds the eigenvalue of the largest absolute value and its associated
eigenvector
• HW2 also requires you to find the second largest eigenvalue. How?

28

An example of D, L, U decomposition

• Linear system:

• Then,

29

Jacobi method

• After DLU decomposition, we have
• (𝐷 + 𝐿 + 𝑈)𝑥 = 𝑏

• Rearranging gives:
• 𝐷𝑥 = 𝑏 − 𝐿 + 𝑈 𝑥

• Jacobi iteration updates:
• 𝑥 𝑘+1 = 𝐷−1(𝑏 − 𝐿 + 𝑈 𝑥 𝑘).
• Or equivalently:

• 𝑥 𝑘+1 = 𝐷−1𝑏 + (−𝐷−1 𝐿 + 𝑈)
=: 𝑇𝐽

𝑥 𝑘 .

• So in compact form:
• 𝑥 𝑘+1 = 𝑇𝐽𝑥 𝑘 + 𝑐, where 𝑐 = 𝐷−1𝑏.

30

Gauss-Seidel method

• After DLU decomposition, we have
• (𝐷 + 𝐿 + 𝑈)𝑥 = 𝑏

• Rearranging gives:
• 𝐷 + 𝐿 𝑥 = 𝑏 − 𝑈𝑥

• Gass-Seidel iteration updates:
• (𝐷 + 𝐿)𝑥(𝑘+1) = 𝑏 − 𝑈𝑥(𝑘)

• Formally, 𝑥(𝑘+1) = 𝑇𝐺𝑆𝑥(𝑘) + 𝑐𝐺𝑆

• where 𝑇𝐺𝑆 = −(𝐷 + 𝐿)−1𝑈, 𝑐𝐺𝑆 = (𝐷 + 𝐿)−1𝑏

31

Summary of Jacobi & Gauss-Seidel method

• Both use the L, U, D decomposition
• 𝐴 = 𝐷 + 𝐿 + 𝑈,

• 𝐷: diagonal of 𝐴
• 𝐿: strictly lower triangular part of 𝐴
• 𝑈: strictly upper triangular part of 𝐴

• Both are guaranteed to converge if 𝐴 is symmetric positive definite
(SPD).
• SPD: 𝐴 = 𝐴𝑇 and 𝑥𝑇𝐴𝑥 > 0 if any 𝑥 ≠ 0.

32

Matrix rank of 𝐴 (𝑚 × 𝑛 matrix)

• Definition:
• Maximal number of linearly independent columns or maximal number of

linearly independent rows.

• Two examples: Find ranks using Gaussian Elimination.

• Rank is number of pivots after Gaussian Elimination.

33

Summary of Conditions for Solutions of a
Linear System 𝐴x = b

34

Geometric view of
these three systems

35

Geometric view of solutions (3-d case)

• Discussion:
• Which figure

shows a unique
solution?

• Which figure
shows infinitely
many solutions?

• Which figure
shows no
solution?

36

Case study: Housing price

• Suppose we would like to build a model predicting house prices.
• The model takes features of a house as inputs, and outputs predicted price.

• Discussion:
• What are the factors (features) of a house that affects its price?

• For example,
• 8 features:

• 1 label: house price 37

Linear model

• Take input feature vector
• Price 𝑥 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + ⋯

• 𝑥1: median income
• 𝑥2: median house age
• 𝑥3: average number of rooms
• 𝑥4: average number of bedrooms
• …

• Label space is the real number space 𝑅

38

Linear model

• In vector form:
• Price 𝑥 = 𝑥T𝑤
• 𝑥 = [𝑥1, 𝑥2, … , 𝑥8]: feature vector
• 𝑤 = [𝑤1, 𝑤2, … , 𝑥8]: parameter vector

• As long as we find a good 𝑤, we have a good linear model.

• Goal: Find a good 𝑤.

39

Considering conditions of linear systems

• In real-world applications, there
are many challenges.
• No solution
• Noisy data
• Overdetermined systems (most

common case)
• Fitting a hyperplane (a line in 2-d) to too

many data points.

• Right figure:
• x is a feature of the house
• y is the price.

40

Considering conditions of linear systems

• In real-world applications, there are
many challenges.
• No solution
• Noisy data
• Overdetermined systems (most

common case)
• Fitting a hyperplane (a line in 2-d) to too

many data points.

• So our goal reduces to find the an
approximate 𝑤 that best describes
the data!

• How?

41

The objective function for learning linear
regression under square loss

• ෝ𝑤 = argmin𝑤
1

𝑛
σ𝑖=1

𝑛 (𝑥𝑖
𝑇𝑤 − 𝑦𝑖)2 = argmin𝑤 𝑋𝑤 − 𝑦 2

2

• aka: Ordinary Least Square (OLS)

• In-class exercise: solve this optimization problem by setting
gradient of the objective function to 0.

42

How do we optimize a continuously
differentiable function in general?

• The problem:

• Discussion: How do you solve this optimization problem?

• Gradient descent in iterations

43

Gradient Descent Demo in 2-D

• An excellent demo tool:
• https://github.com/lilipa

ds/gradient_descent_viz

44

https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz

Gradient descent for quadratic function

• min 𝑓(𝑥) = 𝑥2

• Follow me on the first two examples:
1. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.1

2. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.4

• In-class exercise questions:
1. Find 𝑥4 given 𝑥0 = 4, 𝜂 = 0.4
2. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 1.5 (what did you find?)

45

Back to linear regression: How to solve it
using Gradient Descent?

• ෝ𝑤 = argmin𝑤
1

𝑛
σ𝑖=1

𝑛 (𝑥𝑖
𝑇𝑤 − 𝑦𝑖)2 = argmin𝑤 𝑋𝑤 − 𝑦 2

2

• In-class exercise: Write the GD updating rule for solving w.
• 𝑤 ← 𝑤 − 2𝜂𝑋𝑇 𝑋𝑤 − 𝑦

46

Checkpoint

• Least square:
• Heavily used in practice, due to

• Large datasets (many data points)
• Noisy data
• No solution based on conditions of linear systems

• Linear regression
• ෝ𝑤 = argmin𝑤

1

𝑛
σ𝑖=1

𝑛 (𝑥𝑖
𝑇𝑤 − 𝑦𝑖)2 = argmin𝑤 𝑋𝑤 − 𝑦 2

2

• Direct solver: ෝ𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

• GD: 𝑤 ← 𝑤 − 2𝜂𝑋𝑇 𝑋𝑤 − 𝑦

47

Stochastic Gradient Descent
(Robbins-Monro 1951)
• Gradient descent

• Stochastic gradient descent
• Using a stochastic approximation of the gradient:

48

Herbert Robbins
1915 - 2001

A natural choice of SGD in machine learning

• Recall that

• SGD samples a data point 𝑖 uniformly at random while GD uses all
data!

• Use

49

Illustration of GD vs SGD

50

Time complexity:

GD: 𝑂(𝑛𝑑 ∗ n_iterations)
SGD: 𝑂(𝑑 ∗ n_iterations)

The power of SGD

• Extremely simple:
• A few lines of code

• Extremely scalable
• Just a few pass of the data, no need to store the data

• Extremely general:
• In addition to linear regression, in practice it can solve most optimization

problems of differentiable functions
• E.g., Training neural networks, Transformer, Generative Pretrained Transformer

• Foundational algorithm of the AI revolution as we see today!

51

Time complexity of direct solver and GD/SGD
for solving linear regression
• Direct solver

• 𝑂(𝑛𝑑2 + 𝑑3)

• GD:
• 𝑂(𝑛𝑑𝑇)

• SGD:
• 𝑂(𝑑𝑇)

• 𝑇 = n_iterations

52

What’s Linear Programming (LP)?

• An optimization problem of linear objective functions with linear
constraints.
• Objective function can be minimized or maximized
• Constraints can be in equalities or inequalities
• All functions must be linear functions

• 2 examples:

• Discussion: Could you propose more linear programming problems?

53

Application of LP: Matching problem

• Company (hospital) - Candidate (doctor) matching problem

• Each doctor:
• Fits one position

• Doctors/hospitals:
• Have their preferences

• Goal:
• Put doctors to positions
• Such that overall best match

54

Application of LP: Optimal transport

• Suppose you run a company,
which has 4 factories and 3 big
markets, each in a different city.

55

New York City demands 30

Boston demands 25

Philadelphia demands 30

Buffalo supplies 15

Rochester supplies 20

Syracuse supplies 15

Albany supplies 35

• You job is to design the optimal transportation route that has
minimum transportation cost of your products
• Each route (supply to demand) costs differently
• Each factory has its supply capacity
• Each market must be well supplied to maximize your profit

How to solve the LP problem?

• For most 2-d LP problems,
1. We can draw it’s feasible region
2. And move it’s objective function

• In-class exercise: Draw the feasible region defined by constraints.

56

From primal to dual LP problems

• In-class exercise:
• Work on the following two LP problems by drawing graphs

• What can you see from their optimal Z?

57

From primal to dual LP problems

• Solutions to in-class exercise:

• They are primal and dual LP problems!
58

From primal to dual LP problems

• Primal problem:

• Key idea:
• Multiply each constraint with a non-negative multiplier and form linear

combinations of constraints.

• Finally, dual problem:

59

Dual problem of linear programming

• Economic Interpretation
• The dual variables 𝑦 represent shadow prices — the value of relaxing each

constraint by one unit.
• In a resource allocation problem, each 𝑦𝑖 tells how much the objective (profit)

would improve if resource 𝑖 were increased slightly.

• Weak Duality:
For any feasible 𝑥 (primal) and 𝑦 (dual), 𝑐𝑇𝑥 ≤ 𝑏𝑇𝑦.
• The dual provides an upper bound (for maximization problems).

• Strong Duality:
At the optimal solutions 𝑥∗, 𝑦∗, 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗.
• Solving one problem solves the other — they share the same optimal value.

60

Dual problem of linear programming

• Why we study dual problems?

• Duality helps:
• Check optimality: If primal and dual feasible solutions give the same

objective, both are optimal.
• Perform sensitivity analysis: Dual variables show how changes in

constraints affect the outcome.
• Simplify computation: Some LPs are easier to solve in dual form (e.g.,

when constraints >> variables).

61

Nonlinear equation solver: Bisection method

• Key idea:
• In every iteration, we cut the interval in half while still maintaining the

property that the endpoints have opposite signs. This allows us to
conclude that we’re getting closer and closer to a root.

• Algorithm:

62

Illustration of the bisection method

63

• Initial interval: [1, 5]
• 3 steps in each iteration:

• Given 𝑎, 𝑏, find midpoint
• Check midpoint value
• Update 𝑎 or 𝑏

Nonlinear equation solver: Newton’s method

• Key idea:
• Take 𝐹, find its local linear approximation at a starting point 𝑥0, solve for x

to get 𝑥1, and use that as our new initial point.
• Iterate until (hopefully) convergence.

• So, how to find the local linear approximation of 𝐹 at 𝑥0?
• First-order Taylor expansion at 𝑥0

• Algorithm: (Newton update equation)

64

Illustration of the Newton’s method

65

• In each iteration:

Summary of nonlinear equation solvers

• Things to know about:
• Problem statement
• Assumptions behind each method
• Benefits/drawbacks of each method
• Key theorems from calculus that feature in their analysis
• How does each method look, visually?
• How do we code each method up in Matlab/Python?

• Technical summary table:

66

Methods Bisection method Newton’s method

Assumptions Continuity, opposite sign condition Continuous, differentiable, initial point close to root

Associated theorem Intermediate value theorem Taylor’s remainder theorem

Guarantee Linear convergence Quadratic convergence

Problem setup of Interpolation

• For given data
• 𝑡1, 𝑦1 , 𝑡2, 𝑦2 , … , (𝑡𝑚 , 𝑦𝑚) with 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚

• determine function 𝑓: 𝑅 → 𝑅 such that
• 𝑓(𝑡𝑖) = 𝑦𝑖 , ∀𝑖 = 1, . . . , 𝑚

• Exactly crossing all data points!

• 𝑓 is interpolating function, or interpolant, for given data.
• 𝑓 could be function of more than one variable, but let’s focus on the 1-

dimensional case first.

67

Interpolation vs. Regression

• By definition, interpolating function fits given data points exactly

• Interpolation is inappropriate if data points subject to significant
errors
• Regression is a better choice in this case

• It is usually preferable to smooth noisy data

• Regression is more appropriate for special function libraries
• Linear regression

68

Basis Functions

• Family of functions for interpolating:
• Set of basis functions 𝜙1 𝑡 , . . . , 𝜙𝑛(𝑡)

• Interpolating function 𝑓 is chosen as linear combination of them

• Requiring 𝑓 to interpolate data (𝑡𝑖 , 𝑦𝑖) means

• Discussion: What is this system?
• A system of linear equations 𝐴𝑥 = 𝑦 for 𝑛-vector 𝑥 of parameters 𝑥𝑗, where entries of 𝑚 ×

𝑛 matrix 𝐴 are given by 𝑎𝑖𝑗 = 𝜙𝑗(𝑡𝑖).
69

Basic polynomial interpolation

• Simplest and most common type of interpolation using
polynomials

• Unique polynomial of degree at most 𝑛 − 1 passes through 𝑛 data
points 𝑡𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑛, where 𝑡𝑖 are distinct

70

Basic polynomial interpolation

• Basis functions

• give interpolating polynomial of form

• with coefficients 𝑥 given by 𝑛 × 𝑛 linear system

71

Basis functions

72

Lagrange interpolation

• For given set of data points 𝑡𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑛, let

• Define weights

• Lagrange basis functions are then given by

• From definition, ℓ𝑗(𝑡) is polynomial of degree 𝑛 − 1

73

Lagrange interpolation

• Assuming common factor (𝑡𝑖 − 𝑡𝑗) in ℓ(𝑡𝑗)/(𝑡𝑖 − 𝑡𝑗) is canceled to
avoid division by zero when evaluating ℓ𝑗(𝑡𝑖), then

• Matrix of linear system 𝐴𝑥 = 𝑦 is identity matrix 𝐼
• Coefficients 𝑥 for Lagrange basis functions are just data values 𝑦

• Polynomial of degree 𝑛 − 1 interpolating data points 𝑡𝑖 , 𝑦𝑖 , 𝑖 =
1, … , 𝑛 is given by

74

Lagrange Basis Functions

75

Newton interpolation

• For given set of data points 𝑡𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑛, Newton basis
functions are defined by

• Newton interpolating polynomial has form

• For 𝑖 < 𝑗, 𝜋𝑗(𝑡𝑖) = 0, so basis matrix 𝐴 is lower triangular, where 𝑎𝑖𝑗 = 𝜋𝑗(𝑡𝑖).

76

Newton basis functions

77

Piecewise polynomial interpolation

• Motivation:
• Fitting single polynomial to large number of data points is likely to yield

unsatisfactory behavior in interpolant

• Main advantage:
• Large number of data points can be fit with low-degree polynomials

• How:
• Given data points (𝑡𝑖 , 𝑦𝑖), different function is used in each subinterval

[𝑡𝑖 , 𝑡𝑖+1]
• 𝑡𝑖 is called knot or breakpoint, at which interpolant changes from one function to

another

78

Piecewise polynomial interpolation

• Discussion: Could you provide an
example of a piecewise polynomial
interpolation?

• Simplest example is piecewise linear
interpolation, in which successive
pairs of data points are connected by
straight lines
• Discussion: what are the drawbacks of

linear interpolation?

79

Spline interpolation

• A spline is a smooth piecewise polynomial function.
• Two popular model:

• Quadratic spline, Cubic spline

• Quadratic spline interpolation
• each segment is a second-degree polynomial function.
• Formally, we have data points 𝑡𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑛

• For each interval [𝑡𝑖 , 𝑡𝑖+1], we define a quadratic polynomial
• 𝑓𝑖 𝑡 = 𝑎𝑖 + 𝑏𝑖 t − 𝑡𝑖 + 𝑐𝑖൫𝑡 − 𝑡𝑖)2.

• There are 𝑛 − 1 such polynomials (one per interval).
• Discussion: how many coefficients need to be determined? How many

equations do we need?
• 3(𝑛 − 1)

80

Illustration of piecewise polynomial
interpolation (scipy.interpolate)
• Piecewise linear

81

• Spline – quadratic
• Spline - cubit

Summary

• Interpolating function fits given data points exactly, which is not
appropriate if data are noisy

• Interpolating function given by linear combination of basis
functions, whose coefficients are to be determined

• Existence and uniqueness of interpolant depend on whether
number of parameters to be determined matches number of data
points to be fit

• Piecewise polynomial (e.g., spline) interpolation can fit large
number of data points with low-degree polynomials

• Cubic spline interpolation is excellent choice when smoothness is
important

82

Finally, …

• HW4 due tonight

• Final practice exam and solution reviews next week

• Looking forward to your final presentations on Mon Dec 8!

• I’ll teach CSI 436 Machine Learning next Spring.
• If you enjoy my teaching or want to learn more about AI/ML, feel free to

register
• Let’s see how numerical methods are applied in real-world exciting

algorithms and applications!
83

	Slide 1: CSI 401 (Fall 2025) Numerical Methods Lecture 19: Course Review
	Slide 2: Why learn Numerical Methods?
	Slide 3: Topics of Numerical Methods covered
	Slide 4: Sources of numerical errors
	Slide 5: Types of errors
	Slide 6: One way is to take the absolute difference
	Slide 7: Another way to measure error
	Slide 8: Asymptotic notations
	Slide 9: Asymptotic notations
	Slide 10: Properties of asymptotic notations
	Slide 11: Properties of polynomials
	Slide 12: Machine arithmetic - Decimal expansion
	Slide 13: Machine arithmetic - Binary expansion
	Slide 14: Decimal to binary conversion
	Slide 15: Scientific notation
	Slide 16: Scientific notation
	Slide 17: How data are stored? Floating point system
	Slide 18: Linear systems (linear equations)
	Slide 19: Gaussian elimination
	Slide 20: Gaussian elimination
	Slide 21: Gauss-Jordan Elimination: Beyond Gaussian Elimination
	Slide 22: LU decomposition
	Slide 23: Partial pivoting prevents this issue
	Slide 24: Another example of partial pivoting
	Slide 25: Eigenvalues and eigenvectors
	Slide 26: Goal: Find eigenvectors and eigenvalues of a square matrix cap A.
	Slide 27: Power method: Computing the eigenvalue of largest modulus and its corresponding eigenvector
	Slide 28: Summary
	Slide 29: An example of D, L, U decomposition
	Slide 30: Jacobi method
	Slide 31: Gauss-Seidel method
	Slide 32: Summary of Jacobi & Gauss-Seidel method
	Slide 33: Matrix rank of cap A. (m times n matrix)
	Slide 34: Summary of Conditions for Solutions of a Linear System cap A. x equals b
	Slide 35: Geometric view of these three systems
	Slide 36: Geometric view of solutions (3-d case)
	Slide 37: Case study: Housing price
	Slide 38: Linear model
	Slide 39: Linear model
	Slide 40: Considering conditions of linear systems
	Slide 41: Considering conditions of linear systems
	Slide 42: The objective function for learning linear regression under square loss
	Slide 43: How do we optimize a continuously differentiable function in general?
	Slide 44: Gradient Descent Demo in 2-D
	Slide 45: Gradient descent for quadratic function
	Slide 46: Back to linear regression: How to solve it using Gradient Descent?
	Slide 47: Checkpoint
	Slide 48: Stochastic Gradient Descent (Robbins-Monro 1951)
	Slide 49: A natural choice of SGD in machine learning
	Slide 50: Illustration of GD vs SGD
	Slide 51: The power of SGD
	Slide 52: Time complexity of direct solver and GD/SGD for solving linear regression
	Slide 53: What’s Linear Programming (LP)?
	Slide 54: Application of LP: Matching problem
	Slide 55: Application of LP: Optimal transport
	Slide 56: How to solve the LP problem?
	Slide 57: From primal to dual LP problems
	Slide 58: From primal to dual LP problems
	Slide 59: From primal to dual LP problems
	Slide 60: Dual problem of linear programming
	Slide 61: Dual problem of linear programming
	Slide 62: Nonlinear equation solver: Bisection method
	Slide 63: Illustration of the bisection method
	Slide 64: Nonlinear equation solver: Newton’s method
	Slide 65: Illustration of the Newton’s method
	Slide 66: Summary of nonlinear equation solvers
	Slide 67: Problem setup of Interpolation
	Slide 68: Interpolation vs. Regression
	Slide 69: Basis Functions
	Slide 70: Basic polynomial interpolation
	Slide 71: Basic polynomial interpolation
	Slide 72: Basis functions
	Slide 73: Lagrange interpolation
	Slide 74: Lagrange interpolation
	Slide 75: Lagrange Basis Functions
	Slide 76: Newton interpolation
	Slide 77: Newton basis functions
	Slide 78: Piecewise polynomial interpolation
	Slide 79: Piecewise polynomial interpolation
	Slide 80: Spline interpolation
	Slide 81: Illustration of piecewise polynomial interpolation (scipy.interpolate)
	Slide 82: Summary
	Slide 83: Finally, …

