UNIVERSITY ATALBANY

STATE UNIVERSITY OF NEW YORK

CSI401 (Fall 2025)
Numerical Methods

Lecture 19: Course Review

Chong Liu

Department of Computer Science

Nov 24, 2025

Why learn Numerical Methods?

* Motivated by
* most real-world problems in science, engineering, and data science cannot be

solved exactly using closed-form solutions.

* Forexample,

* Many equations, such as nonlinear systems, high-dimensional integrals, and differential
equations, either lack analytical solutions or are too complex to solve by hand.

* Advantages:

Providing systematic algorithms to approximate these solutions with
controllable accuracy and efficiency

Bridging the gap between mathematical theory and computer implementation

Enabling the simulation and prediction of complex problems—such as climate
modeling, structural design, or machine learning

Ensuring stability, convergence, and error control!

Topics of Numerical Methods covered

* Source of numerical errors * Numerical interpolation
« Asymptotic notations and floating * Datafitting and regression
point arithmetic problems
e Review: * Nonlinear equations solvers
* Linear algebra, Python, Matlab, * Optimization methods
LaTeX « Numerical integration and
* Linear systems: differentiation

* Directlinear equations solvers

* Eigenvalues and eigenvectors

* |[terative linear equations solvers
* Conditioning of linear equations

Sources of numerical errors

Initial and Correct Set the locations and Minimize the dimension
Dimension forces of actuators gap

Fuselage Assembly

* Data are always noisy
* Discussion: Any example in your
mind?
* Aircraft fuselage design

* Computers can only handle
discrete data

* Think about data structure: string,
array, tree, ...

* No measuring device is perfect
* Discussion: Any example in your
mind?
* Exact rainfall of Albany, NY in July
20257 No way!

Types of
errors

e Discretization error: we can only deal with values of a function at finitely many points. For

example, a very simple way to do numerical differentiation for a function f is to use a finite
difference formula:

fl@+h) - f@)

fay = 152 (21)

Here, the parameter h is some small number. It cannot be 0, so this introduces discretization
error. Recall that the definition of the derivative of a function at a point x is

po @+ h) — fz)
h—0 h

(2.2)

Later in the course, we’ll considered better methods than this.

Convergence error: in which we, say, truncate a power series expansion, stop an iterative
algorithm after finitely many iterations, etc.

Rounding error: This arises because computers have only finite precision. We can only store a
finite amount of data in any given machine. Interestingly, in numerical differentiation, there is
a tradeoff between discretization error and rounding error (since we cannot make h infinitely
small), and this leads to some optimal choice of h! So multiple types of error can play an
important role simultaneously in some problems.

One way is to take the absolute difference

e Definition of absolute error:
* |lu — v

AAAAAAA

\\\\\\
\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\

* |t’'s so simple, but it has some problems:

* Suppose we try to figure out how much air passes through a Boeing 737
engine per minute during the flight.

* The true answer is 120,000 pounds.
* Your solution shows 119,000 pounds, so absolute erroris 1,000 pounds.

* Discussion: You missed 1,000 pounds? Are you doing a good job?

Another way to measure error

e Definition of relative error:

u—v
® |—

u
e note u is the true number

* Discussion: What’s the relative error in previous example?

* Suppose we try to figure out how much air passes through a Boeing 737
engine per minute during the flight.

* The true answer is 120,000 pounds.
* Your solution shows 119,000 pounds.

Asymptotic notations

* Used to compare
the growth of two
functions f(x) and
g(x) as x tends to
some limit point x.

e Discussion:

c flx) =x%,g(x) =x.

Which notation
shall we use?

To do this, we look at the absolute value of the ratio of the two:

f@)| (26)
g(z)
The behavior of this can be one of three different things as x — zg:
]
/(@) — 0. (2.7)
g(z)

In this case, we say that f(z) is asymptotically negligible compared to g(z). We also say that
f(x) = o(g(z)) (i-e., “f(z) is small ‘oh’ of g(z)”) as x — zo.

g(x)
converges to a positive constant or oscillates but stays bounded.
®
f(@) — 0. (2.9)
g(z)

In this case, we say that f(x) is asymptotically dominant compared to g(z). This implies

that g(z) = o(f(z)).

Asymptotic notations

* Additionally, we saythat f(x) = 0(g(x)) asx — x; ifthereis
some positive constant C such that

f(x)
g(x) <

* Thus, the O(-) notation means that f (x) is asymptotically upper
bounded by g(x).

* We also say that f(x) = Q(g(x)) if g(x) = O(f (x)).

* We say that f(x) = 0(g(x)) if f (x) = 0(g(x)) and f (x) =
Q(g(x)).

Properties of asymptotic notations

Theorem 3.2 (Properties of asymptotic notations). Let C > 0 be some positive constant, and let
xo € RU{toc}. Then, for any function g(x), as ¢ — x,
C-O(g(z)) = O(g(x)) (3.1)
C-B(g(z)) = O(g(x) (3.2)
C-Q(g(z)) = Qg(z)) (3.3)
C-o(g(z)) = o(g(z)) (3.4)
Additionally, for any f(x)
f(2)O(g(z)) = O(f(z)g(x)). (3.5)

The above theorem allows us to simplify expressions asymptotically. E.g., as x — oo

4e*(sin(x) + 5) + 3x = O(e*(sin(x) + 5)) = O(e?),
where the first equality is because x = o(e*sin(x)), and the second equality is
because 0 < |sin(x)| < 1.

Note that all of this can be verified by looking at ratios of functions, as in the
definition of the notation.

Properties of polynomials

Corollary 3.4. As x — oo, for any fized k, nonzero constant cx, and constants (possibly 0) c; for
j€{0,1,...,k — 1},

P(z) = cpx® + cp_12" 7t + ...+ c1z + o = O(zF). (3.8)
Asx — 0, if 5 is the smallest number for which c; # 0,

P(z) = O(z9). (3.9)

Let us consider the following question: suppose f(z) = ©(g(x)). Is it true in general that f(z) —
g(x) = O(g(x))? NO. For instance,

f(x) =3x,9(x) =3x+5 = f(z) —g(x) =—-5=o(g(x)). (3.10)

11

Machine arithmetic - Decimal expansion

* Take 316.1415 for example:

316.1415:3-102+1-101+6-100+1-10—1+4-10—2+1-10—3+5-10—4.\

* Any real number x can be written as

T =+ i d; - 10/

j=—00

* In-class exercise: Decimal expansions for (1) -2, (2) .

12

Machine arithmetic - Binary expansion

* Similar to decimal expansion, every real number x has a binary
(i.e., base B = 2) expansion:

o0
r — T Z bj . 27
j=—00
e In class exercise: consider a number * = —(1011.01)9 , what’s

the binary expansion of it?

r=—(1-2°+0-2°4+1-2'+1-2°+0-271+1.27%)

13

Decimal to binary conversion

* Every number has a decimal and a binary expansion. Given a
decimal expansion for a number x, how do we determine its
binary expansion?

* We sety = x and repeatedly do the following:

* 1. Compute the maximum integer j such thaty > 27,
e 2. Output .

* 3.Compute y = y — 2/ and go to step 1.

* The algorithm terminates when y = 0.

14

Scientific notation

* Our ultimate goal: come up with areasonable binary
representation of numbers, suitable for storage and manipulation
on a computer.

* Why not just store the binary expansion? The trouble with this is that large
numbers can take up a lot more space than smaller numbers, even if they
don’t have many nonzero digits.

* For instance, consider the following very large number (Avogadro’s
constant) that arises in chemistry:

602000000000000000000000
* How can we store this number in a compact way?

15

Scientific notation

Recall how scientific notation works. In decimal, we can write any real number other than 0 as
z = 4m x 107, (5.12)

for a unique mantissa m and exponent F, with 1 < m < 10 and E some integer. For example,
consider the number 314.159. In scientific notation, this is written as

3.14159 x 102, (5.13)
In the same fashion, a number can be written in base 2 scientific notation: it takes the form
z=4m x 2F, (5.14)

where this time 1 < m < 2. For instance, consider the number 3.25. We converted this to binary
to get (11.01)2. In scientific notation, this becomes

(1.101)5 x 2% (5.15)

* In-class exercise: scientific notations of 4125, 40.125, 4.125

16

How data are stored? Floating point system

bs":g” ny—1"np—2- ng—1Yng—2"""

mant pmant mantimant ETP ETP ETP 1 ETD
pmant bty bEP b bSPhS

Here, there is a single bit giving the sign of the number (0 for negative, 1 for positive). Next is
the mantissa, stored as an mps-bit number (usually 52 bits). Finally, the exponent is stored as an
ng-bit number (usually 11 bits). For a nonzero number, the mantissa is not stored directly: since
it is between 1 and 2, the binary expansion always begins with a 1. This is redundant, so we do
not explicitly store it in the floating point representation. It is simply assumed to be there, leading
to the so-called hidden bit representation. The number 0 has a special representation as all Os.

* Discussion: what’s the numberin[0[/0100000...[...0000011]?
e Solution: -(1+0.25)*8=-10.

17

Linear systems (linear equations)

* An example of linear systems

* Any linear system can always be rewritten in matrix form

a, X, +a;,X, +a|3x3:bl djp A A3

a,X; +apX, +ayX;=b, A,y Ay Ay

a3X; +a5,X, +a,3X; =b, a3 Aj

 More generally, Ax = b
e Aisanm X n matrix
* x is an n-dimensional vector
* bis an m-dimensional vector

* Problem: given A and b, how can you solve x?

—

18

Gaussian elimination

* Rewrite the problem in augmented matrix form
* Original augmented matrix and manipulated augmented matrix

M 9 1 7 i | 7]
3 2 1 1] ey |0 -1 -2 -10
4 -2 2 8] 0 0 10 40 |

* Elementary row operations:
e 2" line =2"9line-3 * 1stline [0 -1 -2 -10], done!
e 39line=3"line-4* 1%t line [0-6 -2 -20]
* Discussion: how to proceed?
e 39line=3"line-6*2"1line [0 0 10 40], done!

Gaussian elimination

* Key idea:

* Use elementary row operations to make A become a right-triangular
matrix

* So that you can sequentially solve the linear systems bottom-up!

! ' ! !
dyp dyp = dig |9
F F !

0 ay, -~ ay, | D)

! !

Gauss-Jordan Elimination: Beyond Gaussian
Elimination

» Consider this linear system: * —2y+3z2=9
-X + 3y . |
2X-3y+35z=17

* Yes! It’s Gauss-Jordan Elimination.

* Key idea:
* Use elementary row operations to make A become an identity matrix
* So that you can directly read the results!

- Elementary row _ Elementary row _

l -2 3 9 operations 1 <2 3 operations Lk 1
-1 3 0 -4 => N 1 3 5 —> (0 1 0 -1
5 B B 11 Gaussian Gauss-Jordan
- - elimination —O _ I <4 elimination _O 0 1 2_

LU decomposition

cA=LU

* Lis alower triangular matrix, U is a upper triangular matrix
* Note this decomposition may not be unique

* |[n-class exercise: 2 1 1
 Find an LU decompositionof 4=|4 -6 0

e Solutions:

-2 7 2

cupp=an =2, up=ap=1, uz=a3=1

o Loy =an/u =4/2=2, I3 =an/un =—-2/2=-1 1 0 0 2 1 1
s Uk = agpy —yupp = —6-2-1=-8 L=|2 1 0|, U=|0 -8 —2f.
e Uy =a —Lyuz=0-2-1= -2 -1 -1 1 0 0 1

o L2 = (az — Lyuiz) /upe = (7T—(—1)-1)/(-8) =8/(-8) = —1
. ’LL33:CL33—£3]_U13—£32U23:2—(—1)-1— (—1)(—2) =2+1-2=1

22

Partial pivoting prevents this issue

* How does partial pivoting work?
* Swap rows to make pivot have the largest absolute value in its column.

(1020 1 1) Ri¢>Ro (11 2) Ro+R2—10-20R; (1 1 ‘ 2)
1 1| 2 10720 1 | 1 “"\0 1-1072%0 | 1—2.107%

1—2-10"20
1—10-20
T1+To=2 — 27 =1+10"%.

~ 1+ 102

ro =

* Why does it work?

* Avoid dividing by tiny numbers, reduces relative error, and makes LU
numerically stable for most matrices.

23

Another example of partial pivoting

7 —20 5 2 1 3 0 6.714 1.5714
(11.18)

7 =20 % R3<R3—(2.857/6.714)R 7 =20 %
foolis 1o 6714 15714 | BRI 0 6714 1.5714

9 1 3 7020 5\ o (T -2 5
1 10720 4| Befs [q0-20 4| BB (WDRLRsCR—Q/DR [9057 3986

0 2.857 3.286 0 0 26173
(11.19)

24

Eigenvalues and eigenvectors

* Definition:
* Forann X n matrix A, an eigenvector v of A is a nonzero vector such that
there exists some A € R satisfying

e Av = Av.

e Discussion:

e What’s the dimension of v?
* |s Av a matrix or a vector?
* |s Av avector or areal number?

25

Goal: Find eigenvectors and eigenvalues of a
square matrix A

* Discussion: How to find eigenvalues by hand?
* Reviewed in Lecture 3.

* Work with the characteristic equation for the eigenvalues A:

Av=w s Av— =08 Av-Alv=0& (A—A)v=0.

* But vis anonzero vector, so det(4 — Al) = 0.

26

Power method: Computing the eigenvalue of
largest modulus and its corresponding eigenvector

A1 > (A2 = ... = |\l

* Works for diagonalizable matrix only. All symmetric matrices are
diagonalizable.

* Algorithm:
e Start with an initial nonzero vector w(®
e Runin K iterations
w1 — Aw'™)

([Aw®]e]

 Thenyour finalw® = p,
 And Al = Avl/vl

27

Summary

* Power method is to used to calculate eigenvalue and eigenvector
of a matrix

* |[n an iterative way
e Stopping criterion: number of iterations, relative error

* Works for diagonalizable matrices only
* All symmetric matrices are diagonalizable

* Only finds the eigenvalue of the largest absolute value and its associated
eigenvector

* HW2 also requires you to find the second largest eigenvalue. How?

28

An example of D, L, U decomposition

* Linear system:

* Then,

r4$1—+—$2—+—2$3 :4,
{ x1 + 319 + 3 = 5,
L2$1+£L’2+5€B3 = 6.

.

I
I 1
SRS

R
) B A

8

I
—
8 8 8
W N
1

oS-

I
1
(@) R) QTSN
—_ 1

29

Jacobi method

* After DLU decomposition, we have
*D+L+U)x=0b
* Rearranging gives:
e Dx =b—(L+U)x
* Jacobi iteration updates:
o x(k+D = p=1(p — (L + U)x).
* Orequivalently:
« x¥+D = p=1p 4+ (=D7'(L + 1)) x¥.

::T]

* Soin compact form:
o x(ktD) — T]x(k) + ¢, wherec = D™ 1bh.

30

Gauss-Seidel method

* After DLU decomposition, we have
*(D+L+U)x=0>b

* Rearranging gives:
e (D+L)x=b—Ux

* Gass-Seidel iteration updates:
* (D + L)x%*tD = p — Jx*)

* Formally, x*D = T ox(®) 4 ¢,
« where Tgs = —(D+ L) 1U,ccs = (D + L) 1h

31

Summary of Jacobi & Gauss-Seidel method

* Both use the L, U, D decomposition

cA=D+L+U,
* D:diagonalof A
e L: strictly lower triangular part of A
e U: strictly upper triangular part of A

* Both are guaranteed to converge if A is symmetric positive definite
(SPD).
« SPD: 4 = AT andxTAx > Oifanyx # 0.

32

Matrix rank of A (m X n matrix)

* Definition:
* Maximal number of linearly independent columns or maximal number of
linearly independent rows.

* Two examples: Find ranks using Gaussian Elimination.

0 1 2 3 1 2 e o
0 B=12 4 6 2 4 TR,
3 0 1 1 0 1

* Rank is number of pivots after Gaussian Elimination.

= O W
o O =
O DN

33

_o W

|

Summary of Conditions for Solutions of a

Linear System Ax = b

Case

No Solution

Unique Solution

Infinitely Many Solutions

Rank Condition

rank(A) < rank(|[A4 | b))

rank(A) = rank([A | b]) =n

rank(A) = rank([A | b]) <n

Number of Solutions

None (inconsistent

system)

Exactly one

Infinitely many

Geometric Interpretation

Hyperplanes do not intersect

(contradictory equations)

Hyperplanes intersect at a single

point

Hyperplanes intersect along a line,
plane, or higher-dimensional

subspace

34

Geometric view of
these three systems

Unigue Solution (Intersection at one point)

X+y=2
x-y=0

Infinitely Many Solutions (Coincident lines)

x+y=2
2X+ 2y =4

-2 -1 0 1 2 4

X
No Solution (Parallel distinct lines)

X+y=2
x+y=0

=) = 4

35

Geometric view of solutions (3-d case)

* Discussion:

* Which figure
shows a unique
solution?

* Which figure
shows infinitely
many solutions?

* Which figure
shows no
solution?

36

Case study: Housing price

* Suppose we would like to build a model predicting house prices.
* The model takes features of a house as inputs, and outputs predicted price.

* Discussion:
 What are the factors (features) of a house that affects its price?

* For example,

- MedInc median income in block group

° . - HouseAge median house age in block group

8 features' -~ AveRooms average number of rooms per household

- AveBedrms average number of bedrooms per household
- Population block group population
- AveOccup average number of household members
- Latitude block group latitude
- Longitude block group longitude

* 1 label: house price

37

Linear model

* Take input feature vector

* Price(x) = wixy + wWox, + WX + Wux, + -+

* x1: medianincome

* X,: median house age

X3: average number of rooms

x,4: average number of bedrooms

* Label space is the real number space R

38

Linear model

* |[n vector form:

e Price(x) = xTw

* X = [xq, X5, ..., Xg|: feature vector
* w = [wq{, Wy, ..., Xg|: parameter vector

* Aslong as we find a good w, we have a good linear model.

* Goal: Find a good w.

39

Considering conditions of linear systems

* In real-world applications, there
are many challenges.

* No solution o Dot .
o NOISy data o — Fitted Line
* Overdetermined systems (most

common case) 15 |

* Fitting a hyperplane (a line in 2-d) to too

many data points.
10 ~

* Right figure:

 xis afeature of the house

1 1 D T T T T T T
* yisthe price. 5] A 5 3 10

40

Considering conditions of linear systems

* In real-world applications, there are
many challenges.

e No solution
@ Data []
* Noisy data —— Fitted Line

20
* Overdetermined systems (most
common case)

* Fitting a hyperplane (a line in 2-d) to too
many data points.

15 ~

10 ~

* So our goal reduces to find the an
approximate w that best describes 51
the data!

* How? " : ; ; s b

41

The objective function for learning linear
regression under square loss

. .1 .
* W = argmin,, — n . (x/w—1y)? = argmin,, || Xw — y||5

* aka: Ordinary Least Square (OLS)

* In-class exercise: solve this optimization problem by setting
gradient of the objective function to 0.

42

How do we optimize a continuously
differentiable function in general?

* The problem: m@in f(6)

* Discussion: How do you solve this optimization problem?

e Gradient descent in iterations

Ory1 = 0: — 0V f(04)

43

Gradient Descent Demo in 2-D

e An excellent demo tool:
* https://github.com/lilipa

ds/gradient_descent_viz

Pause

Restart

Playback speed:

5x

Ecliptic Bowl o

Overview Step-by-Step |

|| Gradient Arrows

|| Adjusted Gradient Arrows
| Momentum Arrows

|| Sum of Gradient Squared
|v| Path

v Gradient Descent

LearningRate: 1e -2 |

Learning Rate: 1e z

Decay rate: +
|| Adagrad

Learning Rate: 1e z

Learning Rate: 1e z

Decay rate: z

Learning Rate: 1e -2 |<
Betat: 0995 C
Beta2: 0999 |2

44

https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz

Gradient descent for quadratic function

* min f(x) = x?

* Follow me on the first two examples:
1. Find x4, givenxy = 2,1 = 0.1
2. Findx,givenxy, =2,n =04

* In-class exercise questions:
1. Find x4 givenxyg = 4,1 = 0.4
2. Find x4 given xy = 2,1 = 1.5 (what did you find?)

45

Back to linear regression: How to solve it
using Gradient Descent?

. .1 .
* W = argmin,, — n . (x/w—1y)? = argmin,, || Xw — y||5

* In-class exercise: Write the GD updating rule for solving w.
cwew—2nXT'(Xw —17y)

46

Checkpoint

* Least square:

* Heavily used in practice, due to
* Large datasets (many data points)
* Noisy data
* No solution based on conditions of linear systems

* Linear regression
1

¢« W= argmin,, — n L (x/w—v)? = argmin,, || Xw — y||3

* Directsolver: w = (XTX)"1XTy
e GD:w «w —2nXT(Xw —y)

47

Stochastic Gradient Descent
(Robbins-Monro 1951)

e Gradient descent

Ory1 = 0: — 0V f(0:)

* Stochastic gradient descent
* Using a stochastic approximation of the gradient:

Or 1 = 0 — 0V £(0;)

" I i
Herbert Robbins
1915 -2001

48

A natural choice of SGD in machine learning

* Recall that
min — 000, (x;,
min — Z i Yi))

* SGD samples a data point i uniformly at random while GD uses all
data!

e Use VQZ(H, (aji) y’b))

49

lllustration of GD vs SGD

R - 7 o Hafr

Time complexity:

GD: O(nd * n_iterations)
SGD: 0(d * n_iterations)

The power of SGD

* Extremely simple:
 Afew lines of code

* Extremely scalable
* Just afew pass of the data, no need to store the data

* Extremely general:

* |n addition to linear regression, in practice it can solve most optimization
problems of differentiable functions
* E.g., Training neural networks, Transformer, Generative Pretrained Transformer

* Foundational algorithm of the Al revolution as we see today!

51

Time complexity of direct solver and GD/SGD
for solving linear regression

 Direct solver
e 0(nd? + d?)
e GD:
* O(ndT)
e SGD:
« 0(dT)

e T' = n_iterations

52

What'’s Linear Programming (LP)?

* An optimization problem of linear objective functions with linear
constraints.

* Objective function can be minimized or maximized
 Constraints can be in equalities or inequalities
* All functions must be linear functions

« 2 examples: min r1 + 22 max 1 + 22
s.t.x1 +x9 <3 s.t.x1 +x9 =
L1 2 1

* Discussion: Could you propose more linear programming problems?

53

Application of LP: Matching problem

« Company (hospital) - Candidate (doctor) matching problem

* Each doctor:
* Fits one position

* Doctors/hospitals:
* Have their preferences

e Goal:

* Put doctors to positions
* Such that overall best match

54

Application of LP: Optimal transport

Boston demands 25

* SUpPpPOSE you run a company,
which has 4 factories and 3 big
markets, each in a different city. Rochester supplies 20 Albany supplies 35

Buffalo supplies 15 Syracuse supplies 15

New York City demands 30
Philadelphia demands 30

* You job is to design the optimal transportation route that has

minimum transportation cost of your products

« Eachroute (supply to demand) costs differently
« Eachfactory has its supply capacity
* Each market must be well supplied to maximize your profit

55

How to solve the LP problem?

maximize x; + 2x9 \
subject tox1 + 2 < 3 max z; + 2z, _

$2§2 -
.’13120
3323_"0

* For most 2-d LP problems,

>
i
1. We can draw it’s feasible region (0.0 (3’0\ :
2. And move it’s objective function T, +2,=3

* In-class exercise: Draw the feasible region defined by constraints.

56

From primal to dual LP problems

* In-class exercise:
* Work on the following two LP problems by drawing graphs

max Z — 1 + X9 min Z = 8y; + 18ys
1 + 2z < 8, y1 + 3y > 1,
s.t. ¢ 3zq + 229 < 18, s.t. § 2y + 2y2 > 1,
T1,X2 20 Y1,Y2 20

* What can you see from their optimal Z?

57

From primal to dual LP problems

e Solutions to in-class exercise:

Graphical Solution of LP Problem

max Z = i + o o min Z = 8y; + 18y,

o ‘Graphical Solution of LP (Minimization) Problem

X1+2x;=8 yi+3y2=1
3%, +2x; =18 2y +2y.=1
g Feasible region 0.7}
T + 229 < 8, Y1+ 3y2 > 1,
06
s.t. 3x1 + 2x5 < 18, g p00- 40 s.t. 2y1 + 2y2 > 1,
0.5k
x1, T3 > 0. Y1,y2 > 0.
< 3f £04F
0.3
2r '{0.25, 0.25)
’{(5.0. 1.5) 0.2}
1 -
0.1r
(0.0, 0.0) | W{G.O. 0.0) | i i i . (0.50‘, 0.00) i i (1.00, Q.OO}I
O0 2 4 6 8 10 O'%.O 0.2 0.4 0.6 0.8 1.0 1.2
X1 Y1

* They are primal and dual LP problems!

58

From primal to dual LP problems

max z = 4x1 + o+ dxg + 314

* Primal problem:

0

T1— T —2T3+3x4y < 1
921+ x4+ 323+ 84 < 55
—x1+ 229+ 323 — by < 3
>

* Key idea: 2
* Multiply each constraint with a non-negative multiplier and form linear
combinations of constraints.

yi(xy —x9 —x3+3x4) + y2(bx1 + 22+ 323+ 8x4) + y3(—xz1+ 229 + 313 — H1y) <
Y1 + 95y + 3ys.

(y1+5y2—y3)z1 + (—y1+ye+2y3)xs + (—y1+3y2+3ys)zs + (3y1+8ys—5Hys3)zy <
Y1 + 99Y2 + 3ys.

Y1 +9y2 — Y3

* Finally, dual problem: ™n® = wntowtdns Ly, oy,
—y1 + 3y2 + 3ys
3y1 + 8y2 — Y3

Yi

vV IV IV IV IV
S W Ut~

Dual problem of linear programming

* Economic Interpretation

* The dual variables y represent shadow prices — the value of relaxing each
constraint by one unit.

* In aresource allocation problem, each y; tells how much the objective (profit)
would improve if resource { were increased slightly.

* Weak Duality:

For any feasible x (primal) and y (dual), c'x < bTy.
* The dual provides an upper bound (for maximization problems).

Strong Duality:
At the optimal solutions x*, y*, cTx* = bl y™.

* Solving one problem solves the other — they share the same optimal value.

60

Dual problem of linear programming

* Why we study dual problems?

* Duality helps:
 Check optimality: If primal and dual feasible solutions give the same
objective, both are optimal.

* Perform sensitivity analysis: Dual variables show how changes in
constraints affect the outcome.

 Simplify computation: Some LPs are easier to solve in dual form (e.g.,
when constraints >> variables).

61

Nonlinear equation solver: Bisection method

* Key idea:

* |[n every iteration, we cut the interval in half while still maintaining the
property that the endpoints have opposite signs. This allows us to
conclude that we’re getting closer and closer to a root.

° AlgOl’Ith m: 1. Preprocessing: If F(a) = O or F(b) = 0, -output-whlchever one was 0 and terminate. If
F(a) < 0 < F(b), then set inc = 1. Otherwise, set inc = 0.

2. Compute z = %b, the midpoint of the interval [a, b].

3. If F(z) =0, return z and terminate.

4. If inc =0 (so F(a) > 0> F(b)):
(a) If F(z) <0, then set b = z.
(b) If F(z) > 0, then set a = z.

5. If inc =1 (so F(a) < 0 < F(b)):
(a) If F(z) <0, then set b = z.
(b) If F(z) > 0, then set a = z.

After k iterations, we output the midpoint of the resulting interval.

62

lllustration of the bisection method

* |Initial interval: [1, 9]

* 3 steps in each iteration:
* Given a, b, find midpoint
* Check midpoint value
« Updateaorb

0.8
06-

0.2-

-0.2
04
06
08

63

Nonlinear equation solver: Newton’s method

* Key idea:

* Take F, find its local linear approximation at a starting point x,, solve for x
to get x{, and use that as our new initial point.

* |terate until (hopefully) convergence.

* S0, how to find the local linear approximation of F at x,?
* First-order Taylor expansion at x,

Pi(z) = F(xo) + F'(x0)(z — z0)-

F(xo) I = _F(SUU)
Flim) © % 7 T T Fi(gy)

0= F(z0) + F'(z0)(x — z9) = —

* Algorithm: (Newton update equation)

B F(xy)
Tkt1 = Tk — Fi(

.’L'k) ’ 64

lllustration of the Newton’s method

* |[n each iteration:

F(zy)
F'(zy)

>

Tk+1 = Tk —

/ a
Funktion
Tangente

65

Summary of nonlinear equation solvers

* Things to know about:

* Problem statement

Assumptions behind each method

Benefits/drawbacks of each method

Key theorems from calculus that feature in their analysis
* How does each method look, visually?

 How do we code each method up in Matlab/Python?

* Technical summary table:

M Bisection method Newton’s method

Assumptions Continuity, opposite sign condition Continuous, differentiable, initial point close to root
Associated theorem Intermediate value theorem Taylor’s remainder theorem

Guarantee Linear convergence Quadratic convergence

66

Problem setup of Interpolation

* For given data
¢ (ter1)» (tz,yz), ey (tm,ym) W|th tl < tz < e < tm
* determine function f: R — R such that

¢ .f(ti) = yi,Vi = 1,...,m
* Exactly crossing all data points!

* f is interpolating function, or interpolant, for given data.

* f could be function of more than one variable, but let’s focus on the 1-
dimensional case first.

67

Interpolation vs. Regression
* By definition, interpolating function fits given data points exactly

* Interpolation is inappropriate if data points subject to significant
errors
* Regression is a better choice in this case

* |tis usually preferable to smooth noisy data

* Regression is more appropriate for special function libraries
* Linear regression

68

Basis Functions

* Family of functions for interpolating:
 Set of basis functions ¢, (t),..., ¢, (t)

* Interpolating function f is chosen as linear combination of them
f(t) =) x¢(t)
j=1

* Requiring f to interpolate data (¢t;, y;) means
f(t,'):Zqubj(t,'):y;, I=1,....m
j=1

* Discussion: What is this system?
* Asystem of linear equations Ax = y for n-vector x of parameters x;, where entries of m X
n matrix A are given by a;; = ¢;(t;). .

Basic polynomial interpolation

* Simplest and most common type of interpolation using
polynomials

* Unique polynomial of degree at most n — 1 passes through n data
points (t;,y;),i = 1, ...,n, where t; are distinct

70

Basic polynomial interpolation

e Basis functions
oi(t)=t'"1, j=1,...,n

* give interpolating polynomial of form
pn—1(t) = x1 + xot + -+ + Xnt

n—1

* with coefficients x given by n X n linear system

1t - tf_l_ X1 | %1

1 t2 tg_l X2 Yo
Ax=|. . . | =

1 t, --- t"H [x, Vn

Basis functions

1.0

0.0

72

Lagrange interpolation

* For given set of data points (¢t;,y;),i = 1, ..., n, let
() =]t —t)=(t—t)(t—t2)--(t — tn)
k=1

* Define weights
1 1

0(t) ez wri(ti — t6)

wj = Jj=1,...,n

* Lagrange basis functions are then given by

Wj :
Ej(t)ZE(t)t_Jt_a lea"'an
J

* From definition, £;(t) is polynomial of degree n — 1

73

Lagrange interpolation

* Assuming common factor (t; — t;) in €(t;)/(t; — t;) is canceled to
avoid division by zero when evaluating ¢;(t;), then
1 ifi=y —
ef(tf)_{o lfl#.j) ’71_1:“-7”
* Matrix of linear system Ax = y is identity matrix [
* Coefficients x for Lagrange basis functions are just data values y

* Polynomial of degree n — 1 interpolating data points (t;,y;),i =
1,...,nis given by

pn-1(t) = Zyjﬁj(t) = Zyjﬁ(t)

n
Wj Wi
= /(t :

74

Lagrange Basis Functions

1.0

0.0

0.0

75

Newton interpolation

* For given set of data points (t;,y;),i = 1, ...,n, Newton basis

functions are defined by
j—1

m(t)=][(t—t), ji=1,...,n

k=1

* Newton interpolating polynomial has form

p,,_l(t) = X1 —|-X2(t — tl) -+ X3(i' — tl)(i' — tz) +
e Xxp(t—t)(t—t) - (t— tho1)

* Fori <j,m(t;) = 0, so basis matrix A is lower triangular, where a;; = 7;(t;).

76

Newton basis functions

3.0 ’
7
W
s
s
/
s/
. e
20- , -
2 Vs é’__.—"-.
/ - -
ey
4 /
s /
1.0 e - -
TF]_ d_-—"'_- - /
o gt 7 /
- w9 . i3 i e
e - P
0.(—_} -E‘—:': N — = T T e - e
I I I |
0.0 0.5 1.0 1.5 2.0

77

Piecewise polynomial interpolation

e Motivation:

* Fitting single polynomial to large number of data points is likely to yield
unsatisfactory behavior in interpolant

* Main advantage:
* Large number of data points can be fit with low-degree polynomials

* How:
* Given data points (t;, y;), different function is used in each subinterval
[ti) tiva]
* t; is called knot or breakpoint, at which interpolant changes from one function to
another

78

Piecewise polynomial interpolation

* Discussion: Could you provide an
example of a piecewise polynomial) .
interpolation? ’

* Simplest example is piecewise linear

Interpolation, in which successive
pairs of data points are connected by |
straight lines e
« Discussion: what are the drawbacks of
linear interpolation?

79

Spline interpolation

* A spline is a smooth piecewise polynomial function.

* Two popular model:
* Quadratic spline, Cubic spline

* Quadratic spline interpolation
* each segmentis a second-degree polynomial function.
* Formally, we have data points (t;,y;),i =1, ...,n
* Foreachinterval [t;, t;11], we define a quadratic polynomial
« fi®) =a; +b(t—t) +ci(t —t)°
 There are n — 1 such polynomials (one per interval).

* Discussion: how many coefficients need to be determined? How many
equations do we need?

* 3(n—1)

80

Illustration of piecewise polynomial
Interpolation (scipy.interpolate)

* Piecewise linear * Spline — quadratic
* Spline - cubit

OOOOOO

81

Summary

* Interpolating function fits given data points exactly, which is not
appropriate if data are noisy

* Interpolating function given by linear combination of basis
functions, whose coefficients are to be determined

* Existence and uniqueness of interpolant depend on whether
number of parameters to be determined matches number of data
points to be fit

* Piecewise polynomial (e.g., spline) interpolation can fit large
number of data points with low-degree polynomials

* Cubic spline interpolation is excellent choice when smoothness is
Important

82

Finally, ...

* HW4 due tonight

* Final practice exam and solution reviews next week
* Looking forward to your final presentations on Mon Dec 8!

* I'll teach CSI 436 Machine Learning next Spring.
* |[f you enjoy my teaching or want to learn more about Al/ML, feel free to
register

* Let’s see how numerical methods are applied in real-world exciting
algorithms and applications!

83

	Slide 1: CSI 401 (Fall 2025) Numerical Methods Lecture 19: Course Review
	Slide 2: Why learn Numerical Methods?
	Slide 3: Topics of Numerical Methods covered
	Slide 4: Sources of numerical errors
	Slide 5: Types of errors
	Slide 6: One way is to take the absolute difference
	Slide 7: Another way to measure error
	Slide 8: Asymptotic notations
	Slide 9: Asymptotic notations
	Slide 10: Properties of asymptotic notations
	Slide 11: Properties of polynomials
	Slide 12: Machine arithmetic - Decimal expansion
	Slide 13: Machine arithmetic - Binary expansion
	Slide 14: Decimal to binary conversion
	Slide 15: Scientific notation
	Slide 16: Scientific notation
	Slide 17: How data are stored? Floating point system
	Slide 18: Linear systems (linear equations)
	Slide 19: Gaussian elimination
	Slide 20: Gaussian elimination
	Slide 21: Gauss-Jordan Elimination: Beyond Gaussian Elimination
	Slide 22: LU decomposition
	Slide 23: Partial pivoting prevents this issue
	Slide 24: Another example of partial pivoting
	Slide 25: Eigenvalues and eigenvectors
	Slide 26: Goal: Find eigenvectors and eigenvalues of a square matrix cap A.
	Slide 27: Power method: Computing the eigenvalue of largest modulus and its corresponding eigenvector
	Slide 28: Summary
	Slide 29: An example of D, L, U decomposition
	Slide 30: Jacobi method
	Slide 31: Gauss-Seidel method
	Slide 32: Summary of Jacobi & Gauss-Seidel method
	Slide 33: Matrix rank of cap A. (m times n matrix)
	Slide 34: Summary of Conditions for Solutions of a Linear System cap A. x equals b
	Slide 35: Geometric view of these three systems
	Slide 36: Geometric view of solutions (3-d case)
	Slide 37: Case study: Housing price
	Slide 38: Linear model
	Slide 39: Linear model
	Slide 40: Considering conditions of linear systems
	Slide 41: Considering conditions of linear systems
	Slide 42: The objective function for learning linear regression under square loss
	Slide 43: How do we optimize a continuously differentiable function in general?
	Slide 44: Gradient Descent Demo in 2-D
	Slide 45: Gradient descent for quadratic function
	Slide 46: Back to linear regression: How to solve it using Gradient Descent?
	Slide 47: Checkpoint
	Slide 48: Stochastic Gradient Descent (Robbins-Monro 1951)
	Slide 49: A natural choice of SGD in machine learning
	Slide 50: Illustration of GD vs SGD
	Slide 51: The power of SGD
	Slide 52: Time complexity of direct solver and GD/SGD for solving linear regression
	Slide 53: What’s Linear Programming (LP)?
	Slide 54: Application of LP: Matching problem
	Slide 55: Application of LP: Optimal transport
	Slide 56: How to solve the LP problem?
	Slide 57: From primal to dual LP problems
	Slide 58: From primal to dual LP problems
	Slide 59: From primal to dual LP problems
	Slide 60: Dual problem of linear programming
	Slide 61: Dual problem of linear programming
	Slide 62: Nonlinear equation solver: Bisection method
	Slide 63: Illustration of the bisection method
	Slide 64: Nonlinear equation solver: Newton’s method
	Slide 65: Illustration of the Newton’s method
	Slide 66: Summary of nonlinear equation solvers
	Slide 67: Problem setup of Interpolation
	Slide 68: Interpolation vs. Regression
	Slide 69: Basis Functions
	Slide 70: Basic polynomial interpolation
	Slide 71: Basic polynomial interpolation
	Slide 72: Basis functions
	Slide 73: Lagrange interpolation
	Slide 74: Lagrange interpolation
	Slide 75: Lagrange Basis Functions
	Slide 76: Newton interpolation
	Slide 77: Newton basis functions
	Slide 78: Piecewise polynomial interpolation
	Slide 79: Piecewise polynomial interpolation
	Slide 80: Spline interpolation
	Slide 81: Illustration of piecewise polynomial interpolation (scipy.interpolate)
	Slide 82: Summary
	Slide 83: Finally, …

