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Announcements

* Today’s two sessions are your last chances to earn your
participation points.

* Up to 3 points can be earned by joining in-class discussions

* The remaining 2 points will be given to all students if at least 60%
students submit their course evaluations

 Why at least 60%7? Statistically significant conclusions on my teaching!



Recap: numerical integration

* For f: R — R, definite integral over interval |a, b]

b
I(f) = f f(x) dx

* is defined by limit of Riemann sums
Ro = (Xir1—x)F(&)
i=1

* Riemann integral exists provided integrand f is bounded and continuous
almost everywhere

* Key question today: How can we use computers to calculate the
integration by querying f only?

* Discussion: What’s your idea?



Recap: Quadrature Rules

n
* An n-point quadrature rule has form Qn(f) = Z wi ()
* Points x; are called nodes —1
* Multipliers w; are called weights

* Quadrature rules are based on polynomial interpolation

* Integrand function f is sampled at finite set of points
* Integral of interpolantis taken as estimate for integral of original function

* |[n practice, interpolating polynomial is not determined explicitly
but used to determine weights corresponding to nodes



Recap: Newton-Cotes Quadrature

* Midpoint rule

M(f)=(b—a)f(a_;b)

* Trapezoid rule
b— a
2

T(f) = (f(a) + £(b))

e Simpson’s rule




Recap: Composite Quadrature

* Subdivide interval |a, b] into k subintervals
* Lengthh = (b —a)/k,forx; =a+jh,j=0,..,k

« Composite midpointrule
k

j=1

« Composite trapezoid rule
k
(x5 — xj-1)
Ti(f) = X_; 0 (Flx-1) + (%))

— h—(%f(a) + f(xy) 4+ -+ F(xk—1) + %f(b))




Recap: Summary of numerical integration

* Integral is approximated by weighted sum of sample values of
Integrand function

* Nodes and weights chosen to achieve required accuracy at least cost
(fewest evaluations of integrand)

* Quadrature rules derived by integrating polynomial interpolant

* Newton-Cotes rules use equally spaced nodes and choose weights to maximize
polynomial degree

 Composite Quadrature divides original interval into subintervals
* Works using piecewise interpolation



Recap: Numerical differentiation

* Differentiation is inherently sensitive, as small perturbations in
data can cause large changes in result

* Integration is inherently stable because of its smoothing effect

* For example, two functions shown below have very similar definite
integrals but very different derivatives




Recap: numerical differentiation

* Given smooth function f: R = R, we wish to approximate its first
and second derivatives at point x

* Key question today: How can we use computers to calculate the
differentiation by querying f only?
* Discussion: what is youridea?

* Consider Taylor series expansions

() o, F()
2 i 6
() o F(x)
2 6

f(x + h) f(x) + ' (x)h + h> .-

f(x — h) f(x) — f'(x)h + h® +




Recap:

Finite Difference Approximations

f(x+ h) —f(x) B f(x) f(x+ h)—f(x)

f’(x): h—|_...@

h 2 h
f,(X) _ f.(X)—lf;(X—h) + fl,éx)h+...
N f(x) —f(x—h)
h
F(x) — f(x—l—h)z—hf(x— h) B f"”6(x)h2 N
_ f(x+h)—f(x—h)
~ 2h
x + h) — 2f(x X — ®)(x
f”(X) _ f( +h) 2’;1(2)-'_"-( h)_flé )h2_|_...

f(x+ h) — 2f(x) + f(x — h)
h2

Q
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Recap: Numerical Differentiation

* Differentiation is inherently sensitive to perturbations

* For continuously defined smooth function, finite difference
approximations to derivatives can be derived by Taylor series or
polynomial interpolation

* Another option is that computer program expressing given
function is differentiated step by step to compute derivative
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Recap: Example of Richardson Extrapolation

* Use Richardson extrapolation to improve accuracy of finite
difference approximation to derivative of function sin(x) at x=1

* Discussion: what’s the result of forward difference approximation with
step size 0.57?

* Using first-order accurate forward difference approximation, we

have F(h) = ap + arh+ O(h?)
* sop =1landr = 2inthisinstance

* Using step sizesof h = 0.5and h/2 = 0.25i.e.,q = 2, we obtain

in(1.5) — sin(1

F() = SN 5())55'"()=0.312048
in(1.25) — sin(1

F(hja) — S 3_)25 sin(1) _ 0.430055
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Recap: Example of Richardson Extrapolation

* Extrapolated value is then given by

F(O) = 39 = F(h)—l— F(h)_ F(h/2)

= 2F(h/2) — F(h) = 0.548061

(1/2) — 1
* For comparison, correctly rounded resultis cos(1) = 0.540302
P
A
1.0
extrapolated value
05 ¥ - (:011£puted values
| | I———
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Agenda

* Ordinary differential equations (ODE)
* Applications

* |nitial value problems
* Euler’s method

* Boundary value problems

* Partial differential equations (PDE)
* Applications
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What'’s a differential equation?

* Differential equations involve derivatives of unknown solution function

* Ordinary differential equation (ODE): all derivatives are with respect to
single independent variable, often representing time

* Solution of differential equation is continuous function in infinite-
dimensional space of functions

* Numerical solution of differential equations is based on finite-
dimensional approximation

15



Example: Newton’s Second Law

e F =ma
* second-order ODE, since acceleration a is second derivative of position coordinate,
which we denote by y

e Thus, ODE has form
y'=F/m

* where F and m are force and mass, respectively
 Defining u; = y and u; = y' yields equivalent system of two first-order ODEs

)= £

* We can now use methods for first-order equations to solve this system
* First component of solution u4 is solution y of original second-order equation
« Second component of solution u, is velocity y’
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Ordinary Differential Equations

* General first-order system of ODEs has form
y'(t) =f(t,y)

where y: R — R”, f: R"™ — R", and y’ = dy/dt denotes
derivative with respect to t,

yi(t)]  [dn(r)/dt]
ya(t) dy>(t)/dt

Vi) Ldya(t)/dt]

* Function fis given and we wish to determine unknown functiony
satisfying ODE



A lot of applications of ODEs

* Newton’s Law of Cooling
* Cooling of engines, heat sinks, electronics temperature decay.

dT
* T(t) :object temperature
* T :ambienttemperature

e k: heat-transfer coefficient
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A lot of applications of ODEs

* Population Growth (Chemical/Biological Engineering)

* Exponential model% =rN

« 4 dN N
* Logistic model; =7rN (1 — E)

« N(t) :population (cells, bacteria, chemical species) Day 0 Day 1
* 7r:growth rate
* K: carrying capacity

Day 4 Day 5

Day 2

Day 3

Day 6
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A lot of applications of ODEs

* Radioactive Decay (Nuclear & Medical Engineering)
* Nuclear reactor design, PET imaging tracers, radiation shielding.

dN

o = —AN
 N(t): amount of radioactive substance ’"Q o
« 1: decay constant N0
Zo%
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Initial Value Problems

* Byitself, ODE y' = f(t,y) does not determine unique solution function

* This is because ODE merely specifies slope y'(t) of solution function at
each point, but not actual value y(t) at any point

 If y(t) is solutionand c is any constant, then y(t) + cis also a solution
because d(y(t) + ¢)/dt =y'(t) + 0 = y'(t)

* Infinite family of functions satisfies ODE, in general

* To single out particular solution, value y, of solution function must be specified
at some point t,
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Initial Value Problems

* Thus, part of given problem data is requirement that y(t,) = y,, which
determines unique solution to ODE

* Because of interpretation of independent variable t as time, we think of
to asinitial time and y, as initial value

* Hence, this is termed initial value problem, or IVP

* ODE governs evolution of system in time from its initial state y, at time
to onward, and we seek function y(t) that describes state of system as
function of time
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Example of Initial Value Problem

» Consider scalar ODE y' =y
* Discussion: Could you try to guess the solution?

 Family of solutions is given by y(t) = ce’, where c is any real
constant
* Imposing initial condition y(ty) = y, singles out unique particular
solution
* Forthis example, if t, = 0, then ¢ = y,, which means that solution is y(t)

= )’oet
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Example of Initial Value Problem

Family of solutions for ODE y’ =y
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How can we solve an [VP problem?

e Euler’s method

* For general system of ODEs y' = f(t,y), consider Taylor series
/ h2 /!
y(t+h) = y(O)+hy'(t)+ Sy (t) +-
h2

= y(&) +hf(t, y(2)) + Sy () + -

* Euler’s method results from dropping terms of second and higher order to
obtain approximate solution value

Yi+1 = Yk + hiF(tx, y)
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In-class exercise of Euler’s method

t=0,0.2, 04, 0.6, 0.8, 1.0

I d eration 0 -
* ConsiderODE: ==y —t*+1 eration 0> 1
dt flto,yo) =05 —-02+1=1.5
with initial condition y(0) = 0.5 = Yo 1 f s o) — 05+ 02(1.5) — 0.8

Iteration1-> 2

* Use Euler’s Method with step o 0802 11— 05 0011 17
sizeh = 0.2to apprOXimate ys = y1 +0.2(1.76) = 0.8 4 0.352 — 1.152

y(ll()). Iteration 2 2> 3
f(ta,ys) = 1.152 — 0.4 + 1 = 1.152 — 0.16 + 1 = 1.992
ys = 1.152 + 0.2(1.992) = 1.152 + 0.3984 = 1.5504
Iteration 3 > 4

e Solution: Yn+1 = Yp + hf(tn, yn) F(ts,y5) = 15504 — 0.6> + 1 = 1.5504 — 0.36 + 1 = 2.1904

ys = 1.5504 + 0.2(2.1904) = 1.5504 + 0.43808 = 1.98848
t I Iteration 4 > 5
n+l — tn + h.
Fta,ys) = 1.98848 — 0.82 + 1 = 1.98848 — 0.64 + 1 = 2.34848

ys = 1.98848 + 0.2(2.34848) = 1.98848 + 0.469696 = 2.458176
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Boundary Value Problems

* Side conditions prescribing solution or derivative values at specified points
are required to make solution of ODE unique

* Forinitial value problem, all side conditions are specified at single point, say
Lo

* For boundary value problem (BVP), side conditions are specified at more than
one point

* For ODEs, side conditions are typically specified at end points of interval
[a,b], so we have two-point boundary value problem with boundary
conditions (BC) ata and b.

27



Example of boundary value problems

* Two-point BVP for second-order scalar ODE
u’ ' =f(t,uu), a<t<b

* with boundary conditions
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Partial differential equations (PDESs)

* Partial differential equations (PDEs) involve partial derivatives with
respect to more than one independent variable

* Independent variables typically include one or more space
dimensions possibly time dimension as well

* More dimensions complicate problem formulation: we can have

* pure initial value problem
* pure boundary value problem
* or mixture of both

29



Partial Differential Equations

* For simplicity , we will deal only with PDEs with only two
Independent variables, either
* two space variables, denoted by x and y
* orone space variable denoted by x and one time variable denoted by t

* Partial derivatives with respect to independent variables are
denoted by subscripts, for example

U = aU/at
Uy = 0°u/Ox0y
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Example: Advection Equation

* U = —CU,
 where c is nonzero constant, with spatialdomain R andt = 0

* Unique solution is determined by initial condition
u(0, x) = wp(x), —00 < X < 00

* where u, is given function defined on R

* We seek solutionu(t,x)fort = 0andallx € R

* From chain rule, solution is given by u(t, x) = uy(x — ct)
* Solution is initial function u, shifted by ct to rightif ¢ > 0, orto leftifc <0
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Example: Advection Equation

2

X

Typical solution of advection equation, with initial function “advected”

(shifted) over time
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Classification of PDEs

* Second-order linear PDEs of general form

auy + bu,, + cuy, + du, +eu, +fu+g=>0

* are classified by value of discriminant b? — 4ac

b?> — 4ac > 0: hyperbolic (e.g., wave equation)
b? — 4ac = 0: parabolic (e.g., heat equation)

b?* — 4ac < 0: elliptic (e.g., Laplace equation)
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Classification of PDEs

* Classification of more general PDEs is not so clean and simple,
but roughly speaking

 Hyperbolic PDEs describe time-dependent, conservative physical
processes, such as convection, that are not evolving toward steady state

* Parabolic PDEs describe time-dependent, dissipative physical processes,
such as diffusion, that are evolving toward steady state

* Elliptic PDEs describe processes that have already reached steady state,
and hence are time-independent
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A lot of applications of PDEs

* Heat Equation (Diffusion Equation)
* Heat conduction in a metal rod or engine block.

Predicts how heat diffuses through the material after heating one end.

e T'=T(z,y, z,t): temperature field (°C or K)
aT (2,9, 2,1)

_ 2 .
a = aVT « ——:rate of temperature change over time

ot
« «: thermal diffusivity (a« = k/(pc))

» k: thermal conductivity
* p:density
¢ c: specific heat

. VZ Laplacian operator

o’T 0*°T O°T
2
VT = 52 + 917 + 552
S - e Units: a [m?/s], V2T [K/m?]
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A lot of applications of PDEs

* Wave Equation (Vibration / Acoustics)

* Vibration of a bridge, airplane wing, or building.
Predicts natural frequencies and vibration modes.

32’& - 2V2 o u(;c, Y, 2, t): displacement (m) of a point on a structure
gz vV Y 0*u _
e —:acceleration
ot?

c: wave propagation speed (depends on tension, density, or material stiffness)

V2u: spatial curvature; where displacement is “bending” or “curving”
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A lot of applications of PDEs

* Navier—-Stokes Equations (Fluid Dynamics)

* Aerospace aerodynamics: simulation of airflow over an aircraft wing.

P (2 1y- VV) — _Vp+ uViv e v = (v, vy, v,): velocity field

p: density

p: pressure field

w: dynamic viscosity

v - VVv: convection of momentum

— Vp: force due to pressure

[JV2V: viscous diffusion of momentum

LHS: "material acceleration”
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A lot of applications of PDEs

* Advection-Diffusion Equation (Transport of Pollutants)
* Modeling pollutant concentration in rivers, smoke in air, or heat in fluids.

oC o C(z,y, z,t): concentration of pollutant or chemical species
W+V*VC:DV2C 8(7’ o .
. E: local accumulation

v = (vg, vy, v;): velocity field (flow speed of water/air)

v - V(' advection term (transport due to flow)

oC oC oC
v-VC = Vo g +vy8—y +v35

D: diffusion coefficient

DV?C: spreading due to diffusion/dispersion
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