

CSI 401 (Fall 2025) Numerical Methods

Lecture 17: Numerical Differentiation

Chong Liu

Department of Computer Science

Nov 17, 2025

Agenda

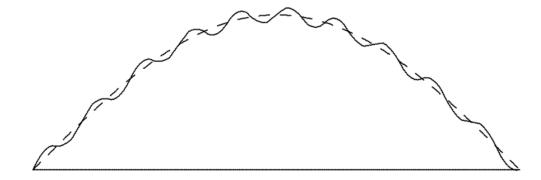
Problem setup of numerical differentiation

Methods of numerical differentiation

- Richardson Extrapolation
 - A method used to improve accuracy of numerical integration and differentiation

Numerical differentiation vs. integration

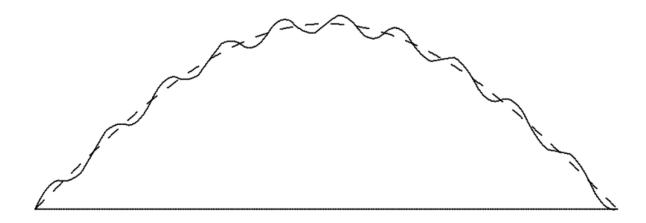
- Discussion: What's the relationship between differentiation and integration?
 - Differentiation is inverse of integration.
- Suppose we have two functions shown below



- Discussion:
 - Suppose you do differentiation and integration for these two functions. Which results will be similar?

Numerical differentiation

- Differentiation is inherently sensitive, as small perturbations in data can cause large changes in result
- Integration is inherently stable because of its smoothing effect
 - For example, two functions shown below have very similar definite integrals but very different derivatives



Problem setup of numerical differentiation

- Given smooth function $f \colon R \to R$, we wish to approximate its first and second derivatives at point x
- Key question today: How can we use computers to calculate the differentiation by querying f only?
 - Discussion: what is your idea?
- Consider Taylor series expansions

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \cdots$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{6}h^3 + \cdots$$

Finite Difference Approximations

• Solving for f'(x) in first series, obtain forward difference approximation

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(x)}{2}h + \cdots \approx \frac{f(x+h) - f(x)}{h}$$

 which is first-order accurate since dominant term in remainder of series is O(h)

Finite Difference Approximations

Similarly, from second series derive backward difference

approximation

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{f''(x)}{2}h + \cdots$$

$$\approx \frac{f(x) - f(x - h)}{h}$$

- which is also first-order accurate
- Subtracting second series from first series gives centered difference approximation

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(x)}{6}h^2 + \cdots$$

$$\approx \frac{f(x+h) - f(x-h)}{2h}$$

which is second-order accurate

Finite Difference Approximations

 Adding both series together gives centered difference approximation for second derivative

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{f^{(4)}(x)}{12}h^2 + \cdots$$

$$\approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

which is also second-order accurate

In-class exercise

- Consider $f(x) = e^x$, and we want to approximate f'(1)
 - Derive the forward difference approximation
 - Derive the central difference approximation
 - For step size h = 0.1, compute:
 - forward and centered difference approximations
 - the exact derivative
- Solutions: Forward difference:

$$D_f = rac{f(1.1) - f(1)}{0.1} = rac{3.004166023 - 2.718281828}{0.1} pprox rac{0.285884195}{0.1} pprox 2.85884195$$

Central difference:

$$D_c = rac{f(1.1) - f(0.9)}{2 \cdot 0.1} = rac{3.004166023 - 2.459603111}{0.2} = rac{0.544562912}{0.2} pprox 2.72281456.$$

$$f'(x) = e^x$$
, $f'(1) = e \approx 2.718281828$.

Numerical differentiation in practice

 Computer program expressing function is composed of basic arithmetic operations and elementary functions, each of whose derivatives is easily computed

 Derivatives can be propagated through program by repeated use of chain rule, computing derivative of function step by step along with function itself

Checkpoint – Numerical Differentiation

Differentiation is inherently sensitive to perturbations

 For continuously defined smooth function, finite difference approximations to derivatives can be derived by Taylor series or polynomial interpolation

 Another option is that computer program expressing given function is differentiated step by step to compute derivative

Richardson Extrapolation - Motivation

- In many problems, such as numerical integration or differentiation, approximate value for some quantity is computed based on some step sizes
 - Discussion: What happens if step size is very large or small?
- Ideally, we would like to obtain limiting value as step size approaches zero, but we cannot take step size arbitrarily small because of excessive cost or rounding error
- Based on values for nonzero step sizes, however, we may be able to estimate value for step size of zero

Richardson Extrapolation

- Let F(h) denote value obtained with step size h
 - This is NOT a function of weights or nodes!
- Key idea:
 - If we compute value of F for some nonzero step sizes, and if we know theoretical behavior of F(h) as $h \to 0$, then we can extrapolate from known values to obtain approximate value for F(0)
- How?
 - Suppose that $F(h) = a_0 + a_1 h^p + \mathcal{O}(h^r)$
 - as $h \to 0$ for some p and r, with r > p
 - Assume we know values of p and r, but not a_0 or a_1 (indeed, $\mathbf{F}(0) = a_0$ is what we seek)

Richardson Extrapolation

• Suppose we have computed F for two step sizes, say h and h/q for some positive integer q

• Then we
$$F(h) = a_0 + a_1 h^p + \mathcal{O}(h^r)$$
 $F(h/q) = a_0 + a_1 (h/q)^p + \mathcal{O}(h^r) = a_0 + a_1 q^{-p} h^p + \mathcal{O}(h^r)$

• This system of two linear equations in two unknowns a_0 and a_1 is easily solved to obtain

$$a_0 = F(h) + \frac{F(h) - F(h/q)}{q^{-p} - 1} + \mathcal{O}(h^r)$$

Example of Richardson Extrapolation

- Use Richardson extrapolation to improve accuracy of finite difference approximation to derivative of function sin(x) at x=1
 - Discussion: what's the result of forward difference approximation with step size 0.5?
- Using first-order accurate forward difference approximation, we have $F(h) = a_0 + a_1 h + \mathcal{O}(h^2)$
 - so p = 1 and r = 2 in this instance
- Using step sizes of h=0.5 and h/2=0.25 i.e., q=2, we obtain

$$F(h) = \frac{\sin(1.5) - \sin(1)}{0.5} = 0.312048$$

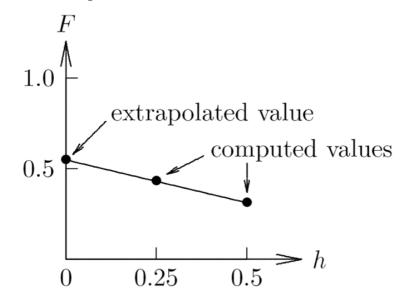
$$F(h/2) = \frac{\sin(1.25) - \sin(1)}{0.25} = 0.430055$$

Example of Richardson Extrapolation

Extrapolated value is then given by

$$F(0) = a_0 = F(h) + \frac{F(h) - F(h/2)}{(1/2) - 1} = 2F(h/2) - F(h) = 0.548061$$

• For comparison, correctly rounded result is cos(1) = 0.540302



Announcements

- Week 14:
 - Lecture 18: Advanced Topic: Differential Equations
 - A very interesting topic, foundational tool of many engineering applications
 - Not part of the final exam
 - Lecture 19: Course Review
 - Very important, covering all topics in Lectures 1-17 for your final exam
- Week 15:
 - Final Exam Practice and Review
- Week 16:
 - Last instructor's office hours
 - HW 3 and 4 Review for your final exam
 - Final project presentation (15')
 - Soundness (3'), organization (3'), clarity (3'), performance (3'), novelty (3')
- Week 17:
 - Monday Dec 15, 2025, Final Exam (5:45-7:15 pm, 30')