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Recap: From kernels to neural networks

Linear layer S(x) =w!o(z) + b




Recap: Two-layer neural networks

* Neural network: S(x) = wi (Wyx + by) + b,
e Still a linear model at the end of the day, so let’s add a nonlinearity o!

Hidden

» Two-layer MLP: S(x) = wlo(Wyx + by) + b, 'meu ‘
* Linear modelw.r.t. to a learnable feature map ‘\‘
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Recap: Learning = Configuring the learnable
function so it behaves as instructed.

* Speech Recognition

f( —=# )="Hello

* Handwritten Recognition
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* Weather forecast
f( Thursday )= “ Saturday”

* Play video games
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Unsupervised learning

Input space: X Images, videos, text, graphs, proteins, programs, etc...

Output space: None.

Hypothesis space: ?‘[

Each hypothesis h is a particular way to summarize the data

Lossfunction £ : H X X — R

Goal:

e Discover data structure
* Often achieved by minimizing the loss



Goal of unsupervised learning is to learn data
structures without labels
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* Discussion: What kind of structures can you see?



What kind of structures can you see?
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Y axis




What kind of structures can you see?
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What kind of structures can you see?
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What kind of structures can you see?
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What kind of structures can you see?




Two broad categories of unsupervised learning
(1) Clustering (2) Dimension reduction

* Clustering:
. finding a partition of the data that makes sense.
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* Dimension reduction:
* identifying a more compact representation (low-dimension) of data
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Application: Motion segmentation and
subspace clustering
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Applications: learn useful vector space
representation of language

* So you can do algebra on them..
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Source: https://towardsdatascience.com/creating-word-embeddings-coding-the-word2vec-algorithm-in-python-using-deep-learning-b337d0ba17a8



Application: Image / video compression

® 100 dpi low JPEG compression

- File size:
', 248K

- 100 dpi medium JPEG compression

File size:
| 49K

100 dpi high JPEG compression

File size:
| 22K

Source: http://preservationtutorial.library.cornell.edu/intro/intro-07.html



How do you learn the structure you see?

Data

Y axis

* Come up with a loss function to minimize?
* Come up a probabilistic model that generates the data?



The problem of k-means clustering

argmmz >l = g

i=1 x€5;

* Where S=1{S5,5,...8;} isapartition of the datase(Xy, X3, ..., X,),

is called a cluster center (centroid) of §;


https://en.wikipedia.org/wiki/K-means%2B%2B

The above optimization problem is equivalent
to the following loss minimization

2
min g mln T; —
L ,,ukERdTL H UJH

* Once we find the centroids, finding the partition of the data is easy.

* |f we have the partition, finding the corresponding centroids is also
easy.

* ldea: Alternating minimizing the centroids and cluster assignments.



K-means clustering with Lloyd’s algorithm
/ K is a hyperparameter .

Algorithm KMeans(D|K) — K-means clustering using Euclidean distance(Dis>)

Input :data D c I]%%d; number of clusters K € .
Output : K cluster means py,..., g € RY.
randomly initialise K vectors pq,..., g € IR"';
repeat
assign eachxe D to argminj Disy (X, pj); <— 1-Nearest neighbor assignment
for j=1to K do
D; — {x€ D|x assigned to clusterj}; <— Partition defined by assignment

o : i
fLj= D] erpj X, <— Re-compute the cluster mean

end

until no change in pu1,..., pg;
return py,..., ug;
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No change — finished!



K-means on our previous examples
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Gaussian mixture models

* Assume the data is generated from a mixture of Gaussian
distribution

Megative log-likelihood predicted by a GMM
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* Data generating process



Fitting mixture of Gaussian model
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* Assign soft labels to each data point.

Algorithms for fitting Gaussian mixture models?

* Expectation-Maximization (not covered in this course... but also alternating
making updates)



Summary: Unsupervised Learning

* K-means algorithm

* Assign hard labels to data points
* How does it work?

* Alternating makes updates
* Which distance function to use?

* How many cluster centers (centroids) to choose?
* How to initialize the centroids?

e Gaussian mixture models

* Assign soft labels to data points
* A probabilistic model for clustering



Announcement

* Teaching evaluation

* Starting this Wednesday!
* Endon May 7

* All students get 2 participation points if our response rate goes above 60%!

* Homework 4 will be released this Wednesday.
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