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Recap: Many ways to transform features
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Recap: It is easier to linearly classify the data
In higher dimensions
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Feature Space

Input Space



Recap: Three main approaches for expanding the
hypothesis class (systematically minimizing the
approx. error)

* Boosting and Bagging (Ensemble learning)

e Combine many weak learners (e.g., decision trees with depth 3) into a strong
learner

* Kernel methods (lift features to higher-dimensional space)
* e.g., adding polynomial expansion, add interaction terms
* Other nonlinear transformation of the original features

* Deep Learning
e Train large neural networks using SGD
* Learn feature representation and classification jointly.
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Today

e Understand neural network
* From linear model

* From kernel method

* From neural network to deep learning

* A brief history of machine learning (starting 1990s)



Example of neural network: AlexNet (2012) —
starting point of deep learning
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—-4096—-1000.

Imagenet classification with deep convolutional neural networks
A Krizhevsky, | Sutskever... - Advances in neural ..., 2012 - proceedings.neurips.cc

... @ large, deep convolutional neural network to classify the 1.2 million high-resclution images
in the ImageMet ... The neural network, which has 60 million parameters and 650,000 neurons, ...
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LeNet (1998)
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Gradient-based learning applied to document recognition
¥ LeCun, L Bottou, ¥ Bengio... - Proceedings of the ..., 1998 - ieeexplore.ieee.org

... gradientbased learning technigue. Given an appropriate network architecture, gradient-based
learning algorithms can be used to ... methods applied to handwritten character recognition ...
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Rumelhart, Hinton, Williams (1986)

* One layer of a feedforward neural networks

Learning representations by back-propagating errors

DE Rumelhart, GE Hinton, RJ Willlams - nature, 1986 - nature.com

... their states are completely determined by the input vector: they do not learn representations.)
The learning procedure must decide under what circumstances the hidden units should be ...
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It goes back even further...

1943 Pitts and McCulloch: Perceptron model to mimic the brain
1956: Rosenblatt’s Perceptron Implementation
1960s:

* |lvakhnenko and Lapa: Multi-layer Perceptron (going deeper)
* Dreyfus: Backpropagation for training (not yet the same as SGD)
 Amari: Use SGD for training MLPs (separating non-linearly separable patterns)

e 1970s:

* Fukushima: Convolutional Neural Networks for images

1982:
* Werbos: Modern day backpropagation / SGD
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From kernels to neural networks

Linear layer
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Two-layer neural networks

* Neural network: S(x) = wl (Wyx + by) + b,

* |In-class exercise: is this linear of x?
e Still a linear model at the end of the day, so let’s add a nonlinearity o'

Hidden

* Two-layer MLP: S(x) = wlo(Wix + b{) + b, N . Butput
* Suppose o is a nhon-linear function ‘\" . ‘

* In-class exercise: is this linear of x? ‘4‘, ‘

* Linear model w.r.t. to a learnable feature map V" ‘
‘/)‘ OO

* RBF-kernel: S(x) = WzTexp(—y(Wlx + bl)) + b,



Choices of activation function

e Activation function must be
non-linear!
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Results of fitting MLPs on our three examples

sklearn.neural_network MLPClassifier
hidden

nn_clf MLPClassifier(hidden_layer_sizes=(hidden,), activation='relu', max_iter

NN on Manual Linearly Separable Data NN on Two Rings Data

NN on Sheared Two Rings Data
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Deep Learning

* Deep learning model is usually referred to deep neural network
* Many many layers

* Some useful facts about deep learning to know:
1. Non-linear activation function.
2. Feature expansion technique but with learned features.

3. Youchoose a deep learning model for constructing hypothesis classes that are
suitable for your problem.

4. Training process requires a lot of computational resources.
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You can use deep learning for all kinds of ML
problems: classification, regression, clustering,
dimension reduction etc..

* Deep learning provides a learnable function approximation

* Different kinds of architecture (like LEGO blocks) are designed to
address different challenges in different kind of problems:

* Feedforward neural network

* Recurrent neural network

* Boltzmann machine

e Convolutional neural network
 Graph Neural Networks

* Transformers
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Learning = Configuring the learnable function
so it behaves as instructed.

* Speech Recognition

f( —=# )="Hello

* Handwritten Recognition
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* Weather forecast
f( Thursday )= “ Saturday”

* Play video games
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Generally speaking, you need to make
decisions about

e Which loss function to use

* For regression, classification, clustering, dimension reduction, but also ranking,
recommendation, and others...

* What type of neural network to use
* Images
* Text
* Graphs (node and edges)

* Time series
* Decide onthe hyperparameters: Depth, Width, Number of hidden units...

* How to train the neural network?
* Initialization of weights: iid random? Rescale or not?
* Optimizerto use: SGD, etc...

* How to collect, pre-process the data...
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Modern neural networks arg e

very complicated — ResNet
2016
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Figure 2. Residual learning: a building block.

Deep residual learning for image recognition
K He, X Zhang, S Ren, J Sun - ... and pattern recognition, 2016 - openaccess.thecvf.com

... Deeper neural networks are more difficult to train. We present a residual learning framework
to ease the training of networks that are substantially deeper than those used previously. ...
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Modern neural networks are

very complicated —
Transformer (2017)
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Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

... to attend to all positions in the decoder up to and including that position. We need to prevent
... We implement this inside of scaled dot-product attention by masking out (setting to —«) ...
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Figure 1: The Transformer - model architecture.
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Solution to this? Brute-force computation
with autograd and GPUs

* Autograd: basically chain rules, can be automated.
* Design networks such that every block is differentiable.

* Faster Computation:

* Well-packaged Deep Learning Farmework: Write Python wrapper code but
running C++ underneath

* Parallel computing: Numerical linear algebra and GPUs, scientific computing,
supercomputing centers.

* Distributed computing: Cloud computing, Map-Reduce, federated learning

o
* Popular tools (there are many more of these): —™ ‘0‘0‘

O PyTO rch tensorflow JAX: Autograd and XLA
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Summary

Neural network
* Learning with neural network == fitting a neural network function

* How to build a strong neural network with great learning ability?
* Non-linear activation function
* More layers

Deep learning
* Deep learning models are deep neural networks with many many layers

* |tstraining process requires a lot of resources
* |t can be used for all kinds of ML problems

Create non-linear hypothesis:

* Ensemble methods (bagging, boosting)
* Neural network

Transform feature representation:
* Kernel methods
* Neural network
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A brief history of machine learning

* We are now in a great time of machine learning / Al!

T ____Builton | __Hotresearchtopics __

1990s- Linear models Kernel methods
2012 Statistical machine learning
Boosting Decision trees Ensemble learning
Learning theory
2012 Deep neural networks Neural networks Deep learning
Computer vision
2017 Transformer Deep neural network Natural language processing
2022 Generative Pre-trained Transformer Large Language Model (LLM)
Transformer (GPT) Generative Al (GenAl)

2027 ??7? GPT? 7?7
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