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Recap: Last lecture

• Risk-Decomposition
• “Optimization error”, “generalization error”and “approximation error”

• Ensemble Learning methods
• Bagging and Random Forest
• Boosting

• Key message: “Weak Learner”➔ “Strong learner”
• You can convert a “simple”ML algorithm (e.g., a Decision Stump) into a

much stronger ML algorithm.
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Recap: Bagging and Boosting
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https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples



Recap: Three main approaches for expanding the
hypothesis class (systematically minimizing the
approx. error)
• Boosting and Bagging (Ensemble learning)

• Combine many weak learners (e.g., decision trees with depth 3) into a strong
learner

• Kernel methods (lift features to higher-dimensional space)
• e.g., adding polynomial expansion, add interaction terms
• Other nonlinear transformation of the original features

• Deep Learning
• Train large neural networks using SGD
• Learn feature representation and classification jointly.
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Today

• Feature expansion

• Kernel methods

4



Recap: Linear classifiers

• How does it make prediction?

• Shape of the decision boundary: a decision line

• Parameters: the weight vector

• How to train a linear classifier?
• Perceptron
• GD / SGD with Logistic loss, hinge loss or other surrogate losses
• Regularization
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Linear classifier is limited. The best linear
classifier might not be good.

1-dimensional example
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Linear classifier is limited. The best linear
classifier might not be good.

What is the prominent
issue for linear classifiers
in this example?
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Idea: Transform the feature so that it becomes
linearly separable!
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Idea: Transform the feature so that it becomes
linearly separable!
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The data is now linearly separable in the
transformed space!
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Many “feature transformation/expansion”
would work!
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The general idea is that in higher dimensions it
is easier for the data to be linearly separable
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How do we do that systematically?

• Example: Quadratic expansion

• More generally: kth order polynomial expansion
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Any issue with this for learning?



Recap: As feature dimension increases, the model
is prone to overfitting --- see “curve fitting”
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“Kernel Trick”

It suffices to work with a
finite n-dimension.

“Kernel methods”: systematically constructing
feature expansions to a very high-dimension!
• Example: Discretization, assume 𝑥 ∈ 𝒳 = [0,1]

• Example: Gaussian RBF kernel Expansion
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We can takeΔ to be arbitrarily small.
It can fit any function.

But the dimension 𝑂 1/Δ 𝑑



(Mercer) Kernel and Reproducing Kernel
Hilbert Space (RKHS)

String kernel Graph kernels

• Let be a qualifying “distance” function.
• Example 1: Dot product, i.e., 𝑘 𝑥, 𝑥′ = 𝑥 ⋅ 𝑥′ = 𝑥𝑇𝑥′

• Example 2: Gaussian RBF-kernel: 𝑘 𝑥, 𝑥′ = 𝑒−𝛾||𝑥 −𝑥′||2

• Example 3: 𝑥 can be a string, a graph, or a protein structure! Check
“String kernel”and “Graph kernels”

• It allows us to generalize all linear methods into kernel methods
• linear in a high-dimensional/function space
• Kernel Ridge Regression, Kernel Logistic Regression, Kernel SVM
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https://en.wikipedia.org/wiki/String_kernel
https://en.wikipedia.org/wiki/Graph_kernel


Kernel ridge regression

• Ridge regression

• Prediction:

• Kernel ridge regression

• K is the matrix of kernelized features
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Implementing kernel SVM in just a few lines
with sklearn (also on libsvm and liblinear)
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Illustration of how a kernel-SVM works as we
adjust the kernel bandwidth
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Kernel: 𝑘 𝑥, 𝑥′ = 𝑒−𝛾||𝑥 −𝑥′||2 Feature map: 𝜙 𝑥 = 𝑒−𝛾||𝑥 −⋅||2
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𝛾 = 100

𝛾 = 10

𝛾 = 0.1
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The choice of hyperparameters of these
kernels can be delicate!
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Summary: Kernel methods

• They are essentially linear models --- linear in the expanded
feature space

• Systematic way to tune the kernel-bandwidth, polynomial order,
allows us to reduce “approximation error” and its tradeoff with
“generalization error”.

• Drawbacks:
• Need to specify the kernel
• Computationally efficient but not scalable!
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