
CSI 436/536 (Fall 2024)
Machine Learning

Lecture 16: Kernel Methods

Chong Liu
Assistant Professor of Computer Science

Nov 7, 2024

Recap: Last lecture

• Risk-Decomposition
• “Optimization error”, “generalization error”and “approximation error”

• Ensemble Learning methods
• Bagging and Random Forest
• Boosting

• Key message: “Weak Learner”➔ “Strong learner”
• You can convert a “simple”ML algorithm (e.g., a Decision Stump) into a

much stronger ML algorithm.

1

Recap: Bagging and Boosting

2
https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples

Recap: Three main approaches for expanding the
hypothesis class (systematically minimizing the
approx. error)
• Boosting and Bagging (Ensemble learning)

• Combine many weak learners (e.g., decision trees with depth 3) into a strong
learner

• Kernel methods (lift features to higher-dimensional space)
• e.g., adding polynomial expansion, add interaction terms
• Other nonlinear transformation of the original features

• Deep Learning
• Train large neural networks using SGD
• Learn feature representation and classification jointly.

28

Today

• Feature expansion

• Kernel methods

4

Recap: Linear classifiers

• How does it make prediction?

• Shape of the decision boundary: a decision line

• Parameters: the weight vector

• How to train a linear classifier?
• Perceptron
• GD / SGD with Logistic loss, hinge loss or other surrogate losses
• Regularization

5

Linear classifier is limited. The best linear
classifier might not be good.

1-dimensional example

6

Linear classifier is limited. The best linear
classifier might not be good.

What is the prominent
issue for linear classifiers
in this example?

7

Idea: Transform the feature so that it becomes
linearly separable!

8

Idea: Transform the feature so that it becomes
linearly separable!

9

The data is now linearly separable in the
transformed space!

10

Many “feature transformation/expansion”
would work!

11

The general idea is that in higher dimensions it
is easier for the data to be linearly separable

12

How do we do that systematically?

• Example: Quadratic expansion

• More generally: kth order polynomial expansion

13

Any issue with this for learning?

Recap: As feature dimension increases, the model
is prone to overfitting --- see “curve fitting”

14

“Kernel Trick”

It suffices to work with a
finite n-dimension.

“Kernel methods”: systematically constructing
feature expansions to a very high-dimension!
• Example: Discretization, assume 𝑥 ∈ 𝒳 = [0,1]

• Example: Gaussian RBF kernel Expansion

15

We can takeΔ to be arbitrarily small.
It can fit any function.

But the dimension 𝑂 1/Δ 𝑑

(Mercer) Kernel and Reproducing Kernel
Hilbert Space (RKHS)

String kernel Graph kernels

• Let be a qualifying “distance” function.
• Example 1: Dot product, i.e., 𝑘 𝑥, 𝑥′ = 𝑥 ⋅ 𝑥′ = 𝑥𝑇𝑥′

• Example 2: Gaussian RBF-kernel: 𝑘 𝑥, 𝑥′ = 𝑒−𝛾||𝑥 −𝑥′||2

• Example 3: 𝑥 can be a string, a graph, or a protein structure! Check
“String kernel”and “Graph kernels”

• It allows us to generalize all linear methods into kernel methods
• linear in a high-dimensional/function space
• Kernel Ridge Regression, Kernel Logistic Regression, Kernel SVM

16

https://en.wikipedia.org/wiki/String_kernel
https://en.wikipedia.org/wiki/Graph_kernel

Kernel ridge regression

• Ridge regression

• Prediction:

• Kernel ridge regression

• K is the matrix of kernelized features

17

Implementing kernel SVM in just a few lines
with sklearn (also on libsvm and liblinear)

18

Illustration of how a kernel-SVM works as we
adjust the kernel bandwidth

19

Kernel: 𝑘 𝑥, 𝑥′ = 𝑒−𝛾||𝑥 −𝑥′||2 Feature map: 𝜙 𝑥 = 𝑒−𝛾||𝑥 −⋅||2

20

𝛾 = 100

𝛾 = 10

𝛾 = 0.1

21

The choice of hyperparameters of these
kernels can be delicate!

22

Summary: Kernel methods

• They are essentially linear models --- linear in the expanded
feature space

• Systematic way to tune the kernel-bandwidth, polynomial order,
allows us to reduce “approximation error” and its tradeoff with
“generalization error”.

• Drawbacks:
• Need to specify the kernel
• Computationally efficient but not scalable!

23

	Slide 0: CSI 436/536 (Fall 2024) Machine Learning Lecture 16: Kernel Methods
	Slide 1: Recap: Last lecture
	Slide 2: Recap: Bagging and Boosting
	Slide 3: Recap: Three main approaches for expanding the hypothesis class (systematically minimizing the approx. error)
	Slide 4: Today
	Slide 5: Recap: Linear classifiers
	Slide 6: Linear classifier is limited. The best linear classifier might not be good.
	Slide 7: Linear classifier is limited. The best linear classifier might not be good.
	Slide 8: Idea: Transform the feature so that it becomes linearly separable!
	Slide 9: Idea: Transform the feature so that it becomes linearly separable!
	Slide 10: The data is now linearly separable in the transformed space!
	Slide 11: Many “feature transformation/expansion” would work!
	Slide 12: The general idea is that in higher dimensions it is easier for the data to be linearly separable
	Slide 13: How do we do that systematically?
	Slide 14: Recap: As feature dimension increases, the model is prone to overfitting --- see “curve fitting”
	Slide 15: “Kernel methods”: systematically constructing feature expansions to a very high-dimension!
	Slide 16: (Mercer) Kernel and Reproducing Kernel Hilbert Space (RKHS)
	Slide 17: Kernel ridge regression
	Slide 18: Implementing kernel SVM in just a few lines with sklearn (also on libsvm and liblinear)
	Slide 19: Illustration of how a kernel-SVM works as we adjust the kernel bandwidth
	Slide 20
	Slide 21
	Slide 22: The choice of hyperparameters of these kernels can be delicate!
	Slide 23: Summary: Kernel methods

