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Recap: Last lecture

* Risk-Decomposition
e “Optimization error”, “generalization error” and “approximation error”

* Ensemble Learning methods
* Bagging and Random Forest
* Boosting

» Key message: “Weak Learner” = “Strong learner”

* You can convert a “simple” ML algorithm (e.g., a Decision Stump) into a
much stronger ML algorithm.



Recap Bagging and Boosting

o

Classifier 3

c loxssi{}ie,r 3

Parallel Sequen‘t?al

https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples



Recap: Three main approaches for expanding the
hypothesis class (systematically minimizing the
approx. error)

* Boosting and Bagging (Ensemble learning)

e Combine many weak learners (e.g., decision trees with depth 3) into a strong
learner

* Kernel methods (lift features to higher-dimensional space)
* e.g., adding polynomial expansion, add interaction terms
* Other nonlinear transformation of the original features

* Deep Learning
e Train large neural networks using SGD
* Learn feature representation and classification jointly.
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Today

* Feature expansion

e Kernel methods



Recap: Linear classifiers
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words

* How does it make prediction?

hw(z) = sign(z’ w + b)

* Shape of the decision boundary: a decision line

* Parameters: the weight vector

e How to train a linear classifier?
* Perceptron

« GD/SGD with Logistic loss, hinge loss or other surrogate losses
* Regularization
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Linear classifier is limited. The best linear
classifier might not be good.

1-dimensional example




Linear classifier is limited. The best linear
classifier might not be good.
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ldea: Transform the feature so that it becomes
linearly separable!




|ldea: Transform the feature so that it becomes

linearly separable!
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The data is now linearly separable in the
transformed space!

§(z) = sign(W"z)
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Many “feature transformation/expansion”
would work!
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The general idea is that in higher dimensions it
IS easier for the data to be linearly separable

Feature Space

%)

Input Space



How do we do that systematically?

 Example: Quadratic expansion

T 1 1 - —
q)l(X) T o
! oy(x)| | -
1| =x > B(x) = B3(x) = 52 ° o
(o)
" 4(x)|  |mz2 K,/
| P5(x)._ z3 :

* More generally: kth order polynomial expansion
®,(x) = (1,21, z2) Any issue with this for learning?
(I’Q(X) = (1,I1,$2,$%,$1$2,$%)

. 2 2 .3 .2 2 .3
(I’S(x) — (1,I1,$2,3¢1,$1a’:2,£€'2,371,261262,261:82,262)
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Recap: As feature dimension increases, the model
IS prone to overfitting --- see “curve fitting”
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“Kernel methods”: systematically constructing
feature expansions to a very high-dimension!

* Example: Discretization, assume x € X = [0,1]

[ 1(z €[0,4]) |
1(5'3 < [Aa 2A]) We can take A to be arbitrarily small.
o(z) = 1(z € [2A,3A)) It can fit any function.

But the dimension 0 ((1/A)d)

1w l- A1)

* Example: Gaussian RBF kernel Expansion

N LA
€ 202
_ |z —t|2 “Kernel Trick” _ lz—zq |2
P(z) = |e” = sx)= |
for te|0,1
€[0,1] It suffices to work with a :
finite n-dimension. _lz—=n 12
e 2
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Kernel

elet £: X x X — Ry beaqualifying “distance” function.
e Example 1: Dot product,i.e., k(x,x") =x-x" = xTx'
. Example 2: Gaussian RBF-kernel: k(x, x") = e~ ¥Ilx —*'II*

* Example 3: x can be a string, a graph, or a protein structure! Check
“String kernel” and “Graph kernels”

* [t allows us to generalize all linear methods into kernel methods
* linearin a high-dimensional/function space
* Kernel Ridge Regression, Kernel Logistic Regression, Kernel SVM
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https://en.wikipedia.org/wiki/String_kernel
https://en.wikipedia.org/wiki/Graph_kernel

Kernel ridge regression

e Ridge regression )
8 8 0= (X"X+ 2, Xy

= X'(XXT + A1)y
 Prediction:

(2,0) = 2" XT(XXT + ML)y = (w,2) [(XXT + M,) " y].
=1

* Kernel ridge regression
<$,é> = [k(m,ml) ..... k(x,mn)} (K + M)ty

e Kisthe matrix of kernelized features
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Implementing kernel SVM in just a few lines
with sklearn (also on libsvm and liblinear)

sklearn S VM

clf = svm.SVC(kernel="rbf', gamma-gamma)
clf.fit(X_train, y_train)
ypred - clf.predict(x_new)
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lllustration of how a kernel-SVM works as we

adjust the kernel bandwidth

Kernel: k(x,x") = e ¥II*~*'lI* Feature map: ¢(x) = e VII*

Gamma = 0.1
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y =100

SVM on Manual Linearly Separable Data SVM on Two Rings Data SVM on Sheared Two Rings Data
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SVM on Two Rings Data

SVM on Two Rings Data
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The choice of hyperparameters of these
kernels can be delicate!

SVM on Manual Linearly Separable Data
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Summary: Kernel methods

* They are essentially linear models --- linear in the expanded
feature space

* Systematic way to tune the kernel-bandwidth, polynomial order,
allows us to reduce “approximation error” and its tradeoff with
“generalization error”.

e Drawbacks:

* Need to specify the kernel
 Computationally efficient but not scalable!
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