UNIVERSITY ATALBANY

STATE UNIVERSITY OF NEW YORK

CSIl 436/536 (Spring 2025)
Machine Learning

Lecture 15: Kernel Methods

Chong Liu

Department of Computer Science

Apr 7, 2025

Recap: Last lecture

* Risk-Decomposition
e “Optimization error”, “generalization error” and “approximation error”

* Ensemble Learning methods
* Bagging and Random Forest
* Boosting

» Key message: “Weak Learner” = “Strong learner”

* You can convert a “simple” ML algorithm (e.g., a Decision Stump) into a
much stronger ML algorithm.

Recap Bagging and Boosting

o

Classifier 3

c loxssi{}ie,r 3

Parallel Sequen‘t?al

https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples

Recap: Three main approaches for expanding the
hypothesis class (systematically minimizing the
approx. error)

* Boosting and Bagging (Ensemble learning)

e Combine many weak learners (e.g., decision trees with depth 3) into a strong
learner

* Kernel methods (lift features to higher-dimensional space)
* e.g., adding polynomial expansion, add interaction terms
* Other nonlinear transformation of the original features

* Deep Learning
e Train large neural networks using SGD
* Learn feature representation and classification jointly.

28

Today

* Feature expansion

e Kernel methods

Recap: Linear classifiers

Proportion
of

misspelled
words

* How does it make prediction?

hw(z) = sign(z’ w + b)

* Shape of the decision boundary: a decision line

* Parameters: the weight vector

e How to train a linear classifier?
* Perceptron

« GD/SGD with Logistic loss, hinge loss or other surrogate losses
* Regularization

Non-spam A
1
[]
\ L]
o N 11
1
\ ®
H .5. °
m
[l \
1
N \
1
i
1
]

Length of the message

Linear classifier is limited. The best linear
classifier might not be good.

1-dimensional example

Linear classifier is limited. The best linear
classifier might not be good.

X % &
® 0
What is the prominent X O
issue for linear classifiers o S
In this example? 0O
ol
O
X X
x %)

ldea: Transform the feature so that it becomes
linearly separable!

|ldea: Transform the feature so that it becomes

linearly separable!
% X o . X , X
X O . x
0O *
0 - x * "
) o o L'q © * *
O . N "
. " x gc ©

1 (1] 1
X2 T3 Doy (x)

The data is now linearly separable in the
transformed space!

§(z) = sign(W"z)

'3 X
X % x b4
% b4
% x
X X
e .
e
oy
D x
go °

10

Many “feature transformation/expansion”
would work!

x
= o

o

o O
(o) (?0

o

L = = A = B bt adak a s A—

z1=xi+ 23— 0.6

_).
And many other would work ...

D

(o]

$ O
F’:I() fu 0
1]
Y g ,

(o] o "

(o)
X a
z1 = (z1 +0.05)? z =x?

The general idea is that in higher dimensions it
IS easier for the data to be linearly separable

Feature Space

%)

Input Space

How do we do that systematically?

 Example: Quadratic expansion

T 1 1 - —
q)l(X) T o
! oy(x)| | -
1| =x > B(x) = B3(x) = 52 ° o
(o)
" 4(x)| |mz2 K,/
| P5(x)._ z3 :

* More generally: kth order polynomial expansion
®,(x) = (1,21, z2) Any issue with this for learning?
(I’Q(X) = (1,I1,$2,$%,$1$2,$%)

. 2 2 .3 .2 2 .3
(I’S(x) — (1,I1,$2,3¢1,$1a’:2,£€'2,371,261262,261:82,262)

13

Recap: As feature dimension increases, the model
IS prone to overfitting --- see “curve fitting”

o0—0 M=0 1

L o M=3 1t

14

“Kernel methods”: systematically constructing
feature expansions to a very high-dimension!

* Example: Discretization, assume x € X = [0,1]

[1(z €[0,4]) |
1(5'3 < [Aa 2A]) We can take A to be arbitrarily small.
o(z) = 1(z € [2A,3A)) It can fit any function.

But the dimension 0 ((1/A)d)

1w l- A1)

* Example: Gaussian RBF kernel Expansion

N LA
€ 202
_ |z —t|2 “Kernel Trick” _ lz—zq |2
P(z) = |e” = sx)= |
for te|0,1
€[0,1] It suffices to work with a :
finite n-dimension. _lz—=n 12
e 2

15

Kernel

elet £: X x X — Ry beaqualifying “distance” function.
e Example 1: Dot product,i.e., k(x,x") =x-x" = xTx'
. Example 2: Gaussian RBF-kernel: k(x, x") = e~ ¥Ilx —*'II*

* Example 3: x can be a string, a graph, or a protein structure! Check
“String kernel” and “Graph kernels”

* [t allows us to generalize all linear methods into kernel methods
* linearin a high-dimensional/function space
* Kernel Ridge Regression, Kernel Logistic Regression, Kernel SVM

16

https://en.wikipedia.org/wiki/String_kernel
https://en.wikipedia.org/wiki/Graph_kernel

Kernel ridge regression

e Ridge regression)
8 8 0= (X"X+ 2, Xy

= X'(XXT + A1)y
 Prediction:

(2,0) = 2" XT(XXT + ML)y = (w,2) [(XXT + M,) " y].
=1

* Kernel ridge regression
<$,é> = [k(m,ml) k(x,mn)} (K + M)ty

e Kisthe matrix of kernelized features

17

Implementing kernel SVM in just a few lines
with sklearn (also on libsvm and liblinear)

sklearn S VM

clf = svm.SVC(kernel="rbf', gamma-gamma)
clf.fit(X_train, y_train)
ypred - clf.predict(x_new)

18

lllustration of how a kernel-SVM works as we

adjust the kernel bandwidth

Kernel: k(x,x") = e ¥II*~*'lI* Feature map: ¢(x) = e VII*

Gamma = 0.1

1.25
1.00
0.75

0.50

0.25

0.00
-0.25
-0.50

-0.75

1.25
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

1.25
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50

-0.75

—|[2

-1.0

-0.5

0.0 0.5 1.0
Gamma =10

1.5

2.0

T

T

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Gamma = 100

Q

<»

1.0 19

y =100

SVM on Manual Linearly Separable Data SVM on Two Rings Data SVM on Sheared Two Rings Data

—6

A

50 25 . . . 75 100 -20 -15 -10 -05 00 05 1.0 15 2.0 -20 -15 -10 -05 00 05 15 2.0
SVM on Manual Linearly Separable Data SVM on Two Rings Data s SVM on Sheared Two Rings Data
2
1
0
-1
-2
-20 -15 -10 -05 00 05 1.0 15 2.0 -20 -15 -10 -05 00 05 1.0 15 2.0

SVM on Two Rings Data SVM on Sheared Two Rings Data

20

2.0

SVM on Two Rings Data

SVM on Two Rings Data

21

The choice of hyperparameters of these
kernels can be delicate!

SVM on Manual Linearly Separable Data

22

Summary: Kernel methods

* They are essentially linear models --- linear in the expanded
feature space

* Systematic way to tune the kernel-bandwidth, polynomial order,
allows us to reduce “approximation error” and its tradeoff with
“generalization error”.

e Drawbacks:

* Need to specify the kernel
 Computationally efficient but not scalable!

23

	Slide 0: CSI 436/536 (Spring 2025) Machine Learning Lecture 15: Kernel Methods
	Slide 1: Recap: Last lecture
	Slide 2: Recap: Bagging and Boosting
	Slide 3: Recap: Three main approaches for expanding the hypothesis class (systematically minimizing the approx. error)
	Slide 4: Today
	Slide 5: Recap: Linear classifiers
	Slide 6: Linear classifier is limited. The best linear classifier might not be good.
	Slide 7: Linear classifier is limited. The best linear classifier might not be good.
	Slide 8: Idea: Transform the feature so that it becomes linearly separable!
	Slide 9: Idea: Transform the feature so that it becomes linearly separable!
	Slide 10: The data is now linearly separable in the transformed space!
	Slide 11: Many “feature transformation/expansion” would work!
	Slide 12: The general idea is that in higher dimensions it is easier for the data to be linearly separable
	Slide 13: How do we do that systematically?
	Slide 14: Recap: As feature dimension increases, the model is prone to overfitting --- see “curve fitting”
	Slide 15: “Kernel methods”: systematically constructing feature expansions to a very high-dimension!
	Slide 16: Kernel
	Slide 17: Kernel ridge regression
	Slide 18: Implementing kernel SVM in just a few lines with sklearn (also on libsvm and liblinear)
	Slide 19: Illustration of how a kernel-SVM works as we adjust the kernel bandwidth
	Slide 20
	Slide 21
	Slide 22: The choice of hyperparameters of these kernels can be delicate!
	Slide 23: Summary: Kernel methods

