

CSI 401 (Fall 2025) Numerical Methods

Lecture 15: Interpolation Using Piecewise Polynomials

Chong Liu

Department of Computer Science

Nov 10, 2025

Agenda

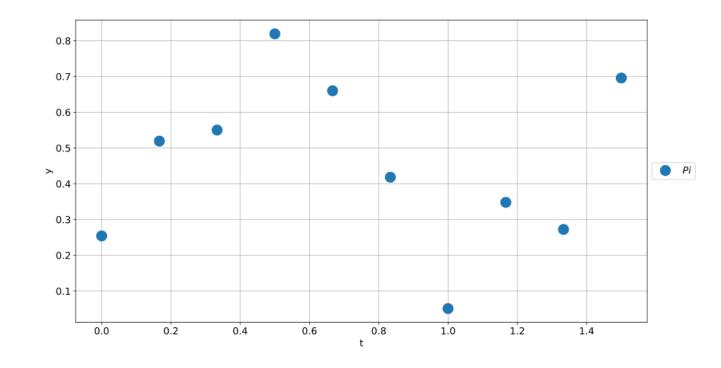
- Different interpolation methods:
 - Polynomial interpolation: Newton interpolation
 - Piecewise polynomial interpolation
 - Piecewise linear interpolation
 - Quadratic spline interpolation
 - Cubic spline interpolation

Recap: Understanding house price change

- You observe the house price change in the past 15 months
 - You have 10 data points
 - t denotes time
 - y denotes price

• Discussion:

- What can you do to study the price trend?
- How can you define a function that describes all these price points?



Recap: Problem setup of interpolation

- For given data
 - $(t_1, y_1), (t_2, y_2), \dots, (t_m, y_m)$ with $t_1 < t_2 < \dots < t_m$
- determine function $f: R \to R$ such that
 - $f(t_i) = y_i, \forall i = 1, \dots, m$

• f is **interpolating function**, or **interpolant**, for given data.

• f could be function of more than one variable, but let's focus on the 1-dimensional case first.

Newton interpolation

• For given set of data points (t_i, y_i) , i = 1, ..., n, Newton basis functions are defined by

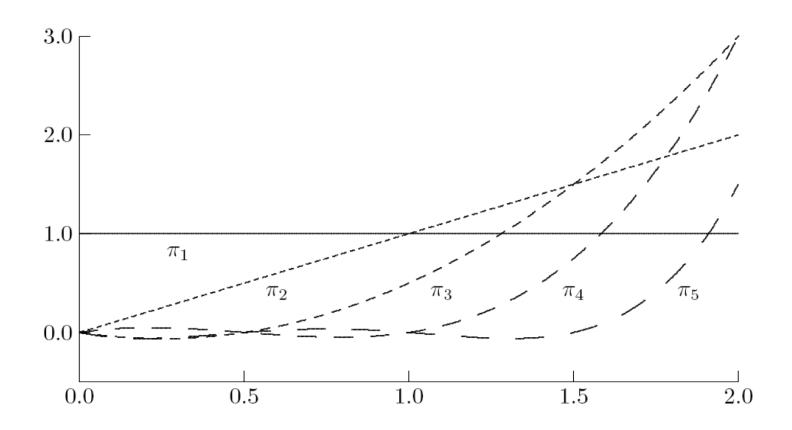
$$\pi_j(t) = \prod_{k=1}^{j-1} (t-t_k), \quad j=1,\ldots,n$$

Newton interpolating polynomial has form

$$p_{n-1}(t) = x_1 + x_2(t-t_1) + x_3(t-t_1)(t-t_2) + \cdots + x_n(t-t_1)(t-t_2) \cdots (t-t_{n-1})$$

• For $i < j, \pi_j(t_i) = 0$, so basis matrix A is lower triangular, where $a_{ij} = \pi_j(t_i)$.

Newton basis functions



In-class exercise: Newton interpolation

• Use Newton interpolation to determine interpolating polynomial for three data points (-2, -27), (0, -1), (1, 0)

Solution:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & t_2 - t_1 & 0 \\ 1 & t_3 - t_1 & (t_3 - t_1)(t_3 - t_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -27 \\ -1 \\ 0 \end{bmatrix}$$

$$x = \begin{bmatrix} -27 & 13 & -4 \end{bmatrix}^T$$

$$p(t) = -27 + 13(t+2) - 4(t+2)t$$

Newton interpolation

• Solution x to triangular system Ax = y can be computed by forward-substitution in $O(n^2)$ operations

• Resulting interpolant can be evaluated in O(n) operations

Updating Newton interpolation

• If $p_j(t)$ is polynomial of degree j-1 interpolating j given points, then for any constant x_{j+1} ,

$$p_{j+1}(t) = p_j(t) + x_{j+1}\pi_{j+1}(t)$$

- is polynomial of degree *j* that also interpolates same *j* points
- Free parameter x_{j+1} can then be chosen so that $p_{j+1}(t)$ interpolates y_{j+1} ,

$$x_{j+1} = rac{y_{j+1} - p_j(t_{j+1})}{\pi_{j+1}(t_{j+1})}$$

• Newton interpolation begins with constant polynomial $p_1(t)=y_1$ and then successively incorporates each remaining data point into interpolant

Convergence of interpolation

 If data points are discrete sample of continuous function, how well does interpolant approximate that function between sample points?

If f is smooth function, and p_{n-1} is polynomial of degree at most n-1 interpolating f at n points t_1, \ldots, t_n , then

$$f(t)-p_{n-1}(t)=\frac{f^{(n)}(\theta)}{n!}(t-t_1)(t-t_2)\cdots(t-t_n)$$

where θ is some (unknown) point in interval $[t_1, t_n]$

Convergence of interpolation

• Theorem:

If
$$|f^{(n)}(t)| \le M$$
 for all $t \in [t_1, t_n]$, and $h = \max\{t_{i+1} - t_i : i = 1, ..., n-1\}$, then

$$\max_{t\in[t_1,t_n]}|f(t)-p_{n-1}(t)|\leq \frac{Mh^n}{4n}$$

Error diminishes with increasing n and decreasing h, but only if $|f^{(n)}(t)|$ does not grow too rapidly with n

Piecewise polynomial interpolation

Motivation:

 Fitting single polynomial to large number of data points is likely to yield unsatisfactory behavior in interpolant

Main advantage:

Large number of data points can be fit with low-degree polynomials

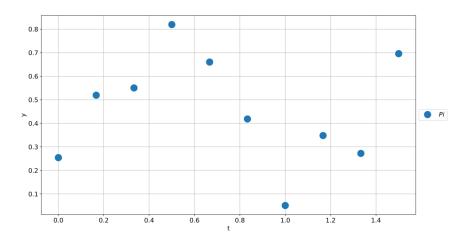
• How:

- Given data points (t_i, y_i) , different function is used in each subinterval $[t_i, t_{i+1}]$
 - t_i is called knot or breakpoint, at which interpolant changes from one function to another

Piecewise polynomial interpolation

 Discussion: Could you provide an example of a piecewise polynomial interpolation?

- Simplest example is piecewise linear interpolation, in which successive pairs of data points are connected by straight lines
 - Discussion: what are the drawbacks of linear interpolation?





Spline interpolation

- A spline is a smooth piecewise polynomial function.
 - Two popular model:
 - Quadratic spline, Cubic spline
- Quadratic spline interpolation
 - each segment is a **second-degree polynomial** function.
 - Formally, we have data points (t_i, y_i) , i = 1, ..., n
 - For each interval $[t_i, t_{i+1}]$, we define a quadratic polynomial
 - $f_i(t) = a_i + b_i(t t_i) + c_i(t t_i)^2$.
 - There are n-1 such polynomials (one per interval).
 - Discussion: how many coefficients need to be determined? How many equations do we need?
 - 3(n-1)

Conditions of quadratic spline interpolation

- The spline passes through all data points:
 - Discussion: How many conditions under this requirement?
 - 2(n-1)
 - $f_i(t_i) = y_i, f_i(t_{i+1}) = y_{i+1}.$
- The spline should be smooth at internal nodes:
 - $f'_i(t_{i+1}) = f'_{i+1}(t_{i+1}), i = 1, ..., n-2.$
 - Discussion: How many conditions under this requirement?
 - n-2
- We need one extra equation to close the system. Common choices:
 - Natural: assume $f_1^{\prime\prime}(t_1)=0$, meaning the curve starts flat.
 - Or clamped: specify the slope at one endpoint.

Cubic spline interpolation

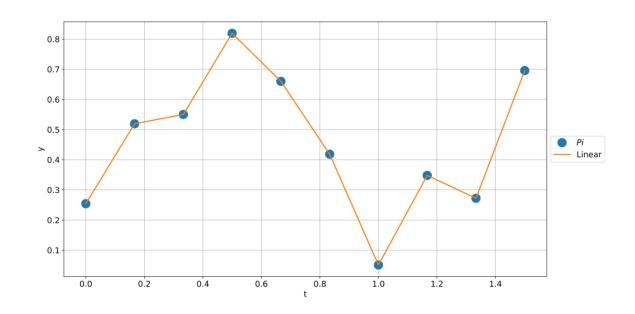
- Each segment is a third-degree polynomial function.
- Formally, we have data points (t_i, y_i) , i = 1, ..., n
- For each interval $[t_i, t_{i+1}]$, we define a quadratic polynomial
 - $f_i(t) = a_i + b_i(t t_i) + c_i(t t_i)^2 + d_i(t t_i)^3$
 - There are n-1 such polynomials (one per interval).

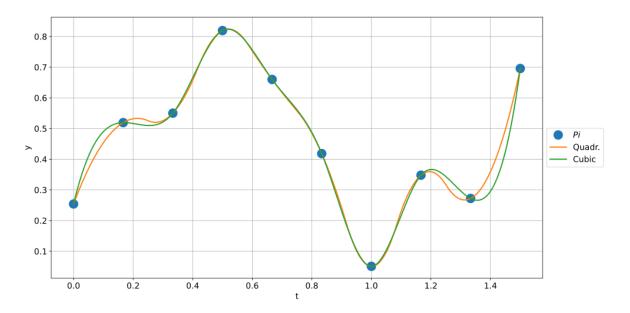
- Discussion: how many coefficients need to be determined? How many equations do we need?
 - 4(n-1)

Illustration of piecewise polynomial interpolation (scipy.interpolate)

Piecewise linear

- Spline quadratic
- Spline cubit





Summary

- Interpolating function fits given data points exactly, which is not appropriate if data are noisy
- Interpolating function given by linear combination of basis functions, whose coefficients are to be determined
- Existence and uniqueness of interpolant depend on whether number of parameters to be determined matches number of data points to be fit
- Piecewise polynomial (e.g., spline) interpolation can fit large number of data points with low-degree polynomials
- Cubic spline interpolation is excellent choice when smoothness is important