

CSI 436/536 (Fall 2024) Machine Learning

Lecture 14: Error Decomposition

Chong Liu Assistant Professor of Computer Science

Oct 31, 2024

Today

- Generalization error by bias-variance decomposition
 - Understand the problem of overfitting
- Learning risk decomposition
 - Introduction to learning theory

So far, we have learned a lot of ML algorithms

- The key goal of ML algorithms is to
 - Minimize the generalization error
 - We want to train a learning algorithm that works well on test data
- The ultimate goal of ML algorithms is to
 - Learn the best hypothesis!
- What are the factors that systematically affect learning process?

Bias-variance decomposition

- Definitions:
 - Feature: *x*
 - Label: $y = f(x) + \epsilon$
 - Label generating function: f(x)
 - Noise: $\epsilon, E[\epsilon] = 0, Var[\epsilon] = \sigma^2$
 - Prediction: \hat{y}
- Bias:
 - $|f(x) E[\hat{y}]|$
- Variance:
 - $E[(\hat{y} E[\hat{y}])^2]$
- Generalization error:
 - $E[(y \hat{y})^2]$

- Generalization error decomposition:
 - $E[(y \hat{y})^2] = Variance + bias^2 + \sigma^2$
 - Bias:
 - fitting of learning algorithm
 - Variance:
 - effect of given dataset
 - Noise:
 - difficulty of the learning problem

Bias-variance trade-off

- Generalization error decomposition:
 - $E[(y \hat{y})^2] = Variance + bias^2 + \sigma^2$
- How to control the degree of training:
 - Decision tree: number of depth
 - Neural network: number of rounds
- Less training:
 - Model fitting is so weak, high bias
- Too much training:
 - Learned a lot of details of data, high variance, overfitting

Loss, Empirical Risk, and Risk

• Loss function

$$\ell(h,(x,y))$$

• Empirical Risk function

$$\hat{R}(h, \text{Data}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, (x_i, y_i))$$

• (Population) Risk function

$$R(h, \mathcal{D}) = \mathbb{E}_{\mathcal{D}}[\ell(h, (x_i, y_i))]$$

Bayes optimal classifier, optimal classifier within the hypothesis class, Empirical Risk Minimizer

- Bayes Optimal classifier: $h_{\text{Bayes}} = \arg \min_{h} R(h)$
 - For 0-1 loss, the Bayes optimal classifier is

$$h_{\text{Bayes}} = \arg \max_{y} p(y|x) = \arg \max_{y} p(x|y)p(y)$$

- Optimal (within hypothesis class) classifier $h^* = \arg \min_{h \in \mathcal{H}} R(h)$
- ERM Classifier $h_{\text{ERM}} = \arg \min_{h \in \mathcal{H}} \hat{R}(h)$
- My classifier $\hat{h} = My_Learning_Algorithm(Data)$

Risk Decomposition

$$\mathbb{E}[R(\hat{h})] - R(h_{\text{Bayes}})$$

$$\leq \mathbb{E}[\hat{R}(\hat{h}) - \hat{R}(h_{\text{ERM}})] + R(h^*) - R(h_{\text{Bayes}}) + \mathbb{E}[R(\hat{h}) - \hat{R}(\hat{h})]$$
Optimization error
Approximation error
Generalization error

	Optimization error	Generalization Error	Approximation Error
Definition	$\hat{R}(\hat{h}) - \hat{R}(h_{\mathrm{ERM}})$	$R(\hat{h}) - \hat{R}(\hat{h})$	$R(h^*) - R(h_{\mathrm{Bayes}})$
Challenges	 Finding ERM for some loss functions is NP-Hard. Efficiency isn't enough. Need to be scalable. 	 We do not observe Risk! Don't have infinite data. Large generalization error Overfitting 	 Don't know data distribution. No knowledge of Bayes optimal classifier. Large approx. error ⇔ Underfitting!
What we have learned to address these challenges?			

	Optimization error	Generalization Error	Approximation Error
Definition	$\hat{R}(\hat{h}) - \hat{R}(h_{\mathrm{ERM}})$	$R(\hat{h}) - \hat{R}(\hat{h})$	$R(h^*) - R(h_{ m Bayes})$
Challenges	 Finding ERM for some loss functions is NP-Hard. Efficiency isn't enough. Need to be scalable. 	 We do not observe Risk! Don't have infinite data. Large generalization error Overfitting 	 Don't know data distribution. No knowledge of Bayes optimal classifier. Large approx. error ⇔ Underfitting!
What we have learned to address these challenges?	"Just-relax" Surrogate loss, Gradient Descent, SGD		

	Optimization error	Generalization Error	Approximation Error
Definition	$\hat{R}(\hat{h}) - \hat{R}(h_{\mathrm{ERM}})$	$R(\hat{h}) - \hat{R}(\hat{h})$	$R(h^*) - R(h_{ m Bayes})$
Challenges	 Finding ERM for some loss functions is NP-Hard. Efficiency isn't enough. Need to be scalable. 	 We do not observe Risk! Don't have infinite data. Large generalization error Overfitting 	 Don't know data distribution. No knowledge of Bayes optimal classifier. Large approx. error ⇔ Underfitting!
What we have learned to address these challenges?	"Just-relax" Surrogate loss, Gradient Descent, SGD	Holdout, Cross-Validation Regularization Statistical learning theory <i>(not covered)</i>	

	Optimization error	Generalization Error	Approximation Error
Definition	$\hat{R}(\hat{h}) - \hat{R}(h_{ ext{ERM}})$	$R(\hat{h}) - \hat{R}(\hat{h})$	$R(h^*) - R(h_{ m Bayes})$
Challenges	 Finding ERM for some loss functions is NP-Hard. Efficiency isn't enough. Need to be scalable. 	 We do not observe Risk! Don't have infinite data. Large generalization error Overfitting 	 Don't know data distribution. No knowledge of Bayes optimal classifier. Large approx. error ⇔ Underfitting!
What we have learned to address these challenges?	"Just-relax" Surrogate loss, Gradient Descent, SGD	Holdout, Cross-Validation Regularization Statistical learning theory <i>(not covered)</i>	Better features More flexible decision boundaries Better probabilistic models

	Optimization error	Generalization Error	Approximation Error
Definition	$\hat{R}(\hat{h}) - \hat{R}(h_{\mathrm{ERM}})$	$R(\hat{h}) - \hat{R}(\hat{h})$	$R(h^*) - R(h_{\mathrm{Bayes}})$
Challenges	 Finding ERM for some loss functions is NP-Hard. Efficiency isn't enough. Need to be scalable. 	 We do not observe Risk! Don't have infinite data. Large generalization error Overfitting 	 Don't know data distribution. No knowledge of Bayes optimal classifier. Large approx. error ⇔ Underfitting!
What we have learned to address these challenges?	"Just-relax" Surrogate loss, Gradient Descent, SGD	Holdout, Cross-Validation Regularization Statistical learning theory <i>(not covered)</i>	Better features More flexible decision boundaries Better probabilistic models But how to minimize approx. error automatically?

	Optimization error	Generalization Error	Approximation Error
Definition	$\hat{R}(\hat{h}) - \hat{R}(h_{\mathrm{ERM}})$	$R(\hat{h}) - \hat{R}(\hat{h})$	$R(h^*) - R(h_{\mathrm{Bayes}})$
Challenges	 Finding ERM for some loss functions is NP-Hard. Efficiency isn't enough. Need to be scalable. 	 We do not observe Risk! Don't have infinite data. Large generalization error Overfitting 	 Don't know data distribution. No knowledge of Bayes optimal classifier. Large approx. error ⇔ Underfitting!
What we have learned to address these challenges?	"Just-relax" Surrogate loss, Gradient Descent, SGD	Holdout, Cross-Validation Regularization Statistical learning theory <i>(not covered)</i>	Better features More flexible decision boundaries Better probabilistic models But how to minimize approx. error automatically?

Often there is a tradeoff.

More **flexible** hypothesis class => smaller approximation error

but larger generalization error (more overfitting) and sometimes harder optimization

Three main approaches for expanding the hypothesis class (systematically minimizing the approx. error)

- Kernel methods (lift features to higher-dimensional space)
 - e.g., adding polynomial expansion, add interaction terms
 - Other nonlinear transformation of the original features
- Boosting and Bagging (Ensemble learning)
 - Combine many weak learners (e.g., decision trees with depth 3) into a strong learner (e.g., by majority voting...)
- Deep Learning
 - Train large neural networks using SGD
 - Learn feature representation and classification jointly.