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Agenda

* One more nonlinear equation F(x) = 0 solver:

e Newton’s method

* Variants: Quasi-Newton’s method



Nonlinear equation solver: Newton’s method

* Key idea:

* Take F, find its local linear approximation at a starting point x,, solve for x
to get x{, and use that as our new initial point.

* |terate until (hopefully) convergence.

* S0, how to find the local linear approximation of F at x,?
* First-order Taylor expansion at x,

Pi(z) = F(xo) + F'(x0)(z — z0)-

F(xo) I = _F(SUU)
Flim) © % 7 T T Fi(gy)

0= F(z0) + F'(z0)(x — z9) = —

* Algorithm: (Newton update equation)

_ F(zy)
Tk+1 = Tk — F’(SU]C) .




lllustration of the Newton’s method

* |[n each iteration:

F(zy)
F'(zy)

>

Tk+1 = Tk —

/ a
Funktion
Tangente
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Example of Newton’s method

* Without a calculator, compute x = V2
* Newton’s method with 3 iterations

* Solutions:
 Rewrite the problem as finding the rootof F(x) = x> -2 =0

* Then F'(x) = 2x
XIZC—Z Xk 1

* Soupdatingruleis Xyq = X ——, — ="+~
k k

* Suppose xy = 2

¢ xl - 1 + % - 15

+ X = 0.75 + = = 1.41666667 ...
. x, = 1.41421569...

 Check x5 = 2.00000602



In-class exercise — calculators needed

 Use Newton’s method to find a root of
* f(x) =x>—-2x—-5=0
* With x, = 2 and 3 iterations.

Newton's Method Convergence (Error vs. lteration)

10—1 o
* Solutions
v
o
Iteration (n) x_n f(x_n) f(x_n) x_(n+1) |x_(n+1) - x_n| ; .
107}
0 2.0000 -1.0000 10.0000 2.1000 0.1000 2
1 2.1000 0.0610 11.2300 2.0946 0.0054 "<
I
2 2.0946 -0.0010 11.1580 2.0947 0.0001 £ 1077 ¢
3 2.0947 0.0000 11.1580 — —
1079
0 1 2 3 4 5 6

lteration n



In-class exercise — Newton’s method

*Solve F(x) =x3—-2x+2=0 ps = o — B 2o F 2

3x2 — 2
* xo = 0 with 2 iterations.

2
ﬂ?lz:ro—_—2=1,

$2=1—1;E;2:1—1:Ozm0'
+ Solve F(x) = x/3 =0
* xo = 2 with 2 iterations. U3
z = I — 3z = —27).

LT+l = Tk — 1/3 ] 33_2/3

* What did you find?



Convergence of Newton’s method

* Newton’s method doesn’t always converge to the root!

e Theorem:

* Newton’s method converges quadratically if:
1. f(x) is continuously differentiable near r,
2. f'(r)#0,
3. The starting value x,is sufficiently close tor.

 If f'(r) = 0 orx, is far from the root, convergence may be slow, linear, or
divergent.



Comparison of good/bad starting points

Newton's Method: Good vs. Bad Starting Values (x in [-3, 41])

— fix)=x>-2x-5
X True root (=2.0947)
40
20
X f

0 U278

=20
rd
=2 -1 0 1 2 3 4




Variants of Newton’s method: Quasi-Newton
methods

* Sometimes, derivatives are expensive to compute, or we can’t compute
them explicitly

* Constant slope method

* Assume derivative is constant in the intervening iterations.
* E.g., update the the calculation of the derivative every tenth iteration.

* Secant method
e Start with two initial points xg, x4

* Updating rule: F(zx)
Tk
TRl = Tk T Fag) —F(ae1)
T —Tk—1
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Summary of nonlinear equation solvers

* Things to know about:

* Problem statement

Assumptions behind each method

Benefits/drawbacks of each method

Key theorems from calculus that feature in their analysis
* How does each method look, visually?

 How do we code each method up in Matlab/Python?

* Technical summary table:

M Bisection method Newton’s method

Assumptions Continuity, opposite sign condition Continuous, differentiable, initial point close to root
Associated theorem Intermediate value theorem Taylor’s remainder theorem

Guarantee Linear convergence Quadratic convergence
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