

CSI 401 (Fall 2025) Numerical Methods

Lecture 13: Nonlinear Equation Solver: Newton's Method

Chong Liu

Department of Computer Science

Nov 3, 2025

Agenda

• One more nonlinear equation F(x) = 0 solver:

Newton's method

Variants: Quasi-Newton's method

Nonlinear equation solver: Newton's method

- Key idea:
 - Take F, find its local linear approximation at a starting point x_0 , solve for x_0 to get x_1 , and use that as our new initial point.
 - Iterate until (hopefully) convergence.
- So, how to find the local linear approximation of F at x_0 ?
 - First-order Taylor expansion at x_0

$$P_1(x) = F(x_0) + F'(x_0)(x - x_0).$$

$$0 = F(x_0) + F'(x_0)(x - x_0) \implies -\frac{F(x_0)}{F'(x_0)} = x - x_0 \implies x = x_0 - \frac{F(x_0)}{F'(x_0)}.$$

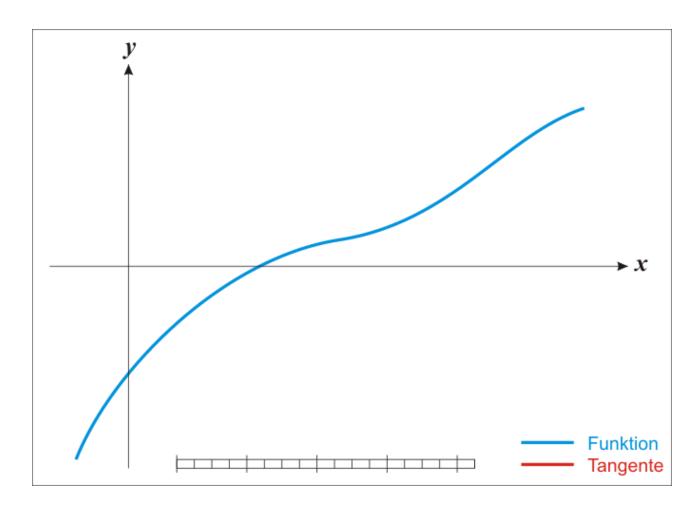
Algorithm: (Newton update equation)

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}.$$

Illustration of the Newton's method

• In each iteration:

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}.$$



Example of Newton's method

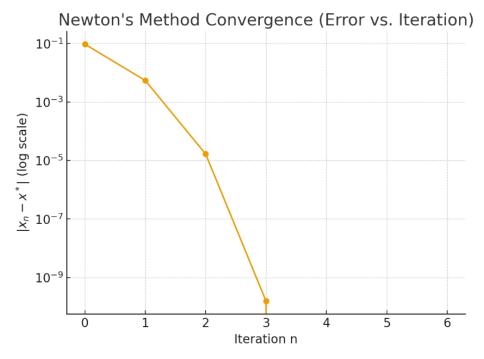
- Without a calculator, compute $x = \sqrt{2}$
 - Newton's method with 3 iterations
- Solutions:
 - Rewrite the problem as finding the root of $F(x) = x^2 2 = 0$
 - Then F'(x) = 2x
 - So updating rule is $x_{k+1} = x_k \frac{x_k^2 2}{2x_k} = \frac{x_k}{2} + \frac{1}{x_k}$
 - Suppose $x_0 = 2$
 - $x_1 = 1 + \frac{1}{2} = 1.5$
 - $x_2 = 0.75 + \frac{1}{1.5} = 1.41666667 \dots$
 - $x_3 = 1.41421569...$
- Check $x_3^2 = 2.00000602$

In-class exercise – calculators needed

- Use Newton's method to find a root of
 - $f(x) = x^3 2x 5 = 0$
 - With $x_0 = 2$ and 3 iterations.

Solutions

Iteration (n)	x_n	f(x_n)	f'(x_n)	x_(n+1)	x_(n+1) - x_n
0	2.0000	-1.0000	10.0000	2.1000	0.1000
1	2.1000	0.0610	11.2300	2.0946	0.0054
2	2.0946	-0.0010	11.1580	2.0947	0.0001
3	2.0947	0.0000	11.1580	_	_



In-class exercise – Newton's method

• Solve $F(x) = x^3 - 2x + 2 = 0$

$$x_{k+1} = x_k - \frac{x_k^3 - 2x_k + 2}{3x^2 - 2}.$$

• $x_0 = 0$ with 2 iterations.

$$x_1 = x_0 - \frac{2}{-2} = 1,$$

$$x_2 = 1 - \frac{1 - 2 + 2}{3 - 2} = 1 - 1 = 0 = x_0.$$

- Solve $F(x) = x^{1/3} = 0$
 - $x_0 = 2$ with 2 iterations.

$$x_{k+1} = x_k - \frac{x_k^{1/3}}{1/3 \cdot x^{-2/3}} = x_k - 3x_k = -2x_k.$$

What did you find?

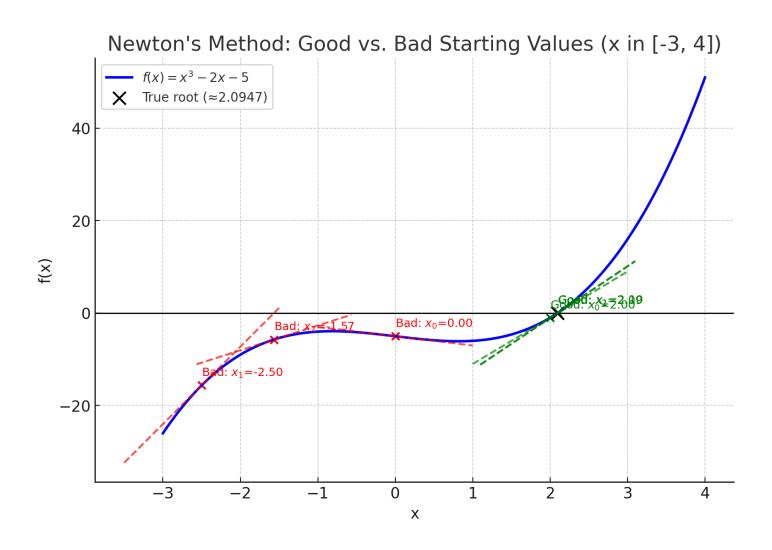
Convergence of Newton's method

Newton's method doesn't always converge to the root!

Theorem:

- Newton's method converges quadratically if:
 - 1. f(x) is continuously differentiable near r,
 - $2. \quad f'(r) \neq 0,$
 - 3. The starting value x_0 is sufficiently close to r.
- If f'(r) = 0 or x_0 is far from the root, convergence may be slow, linear, or divergent.

Comparison of good/bad starting points



Variants of Newton's method: Quasi-Newton methods

 Sometimes, derivatives are expensive to compute, or we can't compute them explicitly

- Constant slope method
 - Assume derivative is constant in the intervening iterations.
 - E.g., update the the calculation of the derivative every tenth iteration.
- Secant method
 - Start with two initial points x_0, x_1
 - Updating rule:

$$x_{k+1} = x_k - \frac{F(x_k)}{\frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}}}.$$

Summary of nonlinear equation solvers

Things to know about:

- Problem statement
- Assumptions behind each method
- Benefits/drawbacks of each method
- Key theorems from calculus that feature in their analysis
- How does each method look, visually?
- How do we code each method up in Matlab/Python?

Technical summary table:

Methods	Bisection method	Newton's method
Assumptions	Continuity, opposite sign condition	Continuous, differentiable, initial point close to root
Associated theorem	Intermediate value theorem	Taylor's remainder theorem
Guarantee	Linear convergence	Quadratic convergence