

CSI 436/536 (Fall 2024) Machine Learning

Lecture 13: Naïve Bayes Models

Chong Liu Assistant Professor of Computer Science

Oct 10, 2024

Today

- Maximum likelihood estimation
 - Linear regression
- Naïve Bayes models
- Midterm review
 - What you should know

Recap: Estimating mean of Gaussian distr.

- Data $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Likelihood: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$
- The MLE problem:

$$\hat{\mu} = \arg \max_{\mu \in [0,1]} \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(X_i - \mu)^2}{2\sigma^2}}$$

MLE for linear regression

• P(y|x) is modeled by "Linear Gaussian model"

$$y_i = x_i^T \theta^* + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d.

• Data:

$$(x_1, y_1), \dots, (x_n, y_n)$$

• Work out the optimization problem to solve for the MLE for θ^* .

After we fit the MLE, how to make predictions? The idea is to just "Plug-In"

• For classification problems $h^*(x) = \max_y p_\theta(y|x) \qquad \qquad \widehat{h}(x) = \max_y p_{\hat{\theta}}(y|x)$

• For regression problems

$$h^*(x) = \mathbb{E}_{\theta}[y|x] \qquad \qquad \hat{h}(x) = \mathbb{E}_{\hat{\theta}}[y|x]$$

Plug in

Prediction after MLE for linear regression

• P(y|x) is modeled by "Linear Gaussian model"

$$y_i = x_i^T \theta^* + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d.

• Data:

$$(x_1, y_1), ..., (x_n, y_n)$$

• Prediction: $y \sim N(x^T \hat{\theta}, \sigma^2)$

Recap: directing modeling p(x|y) is hard

Binary	vec	tors,	2 ³ ro	ows +					
binary output $Y \in \{0,1\}$									
	x_1	<i>x</i> ₂	<i>x</i> 3						
	0	0	0						
	0	0	1						
	0	1	0						
	0	1	1						
	1	0	0						
	1	0	1						
	1	1	0						
	1	1	1						

1. At least 8 data points are needed to determine p(x|y).

2. At least 2^d data points are needed if there are d binary features.

Naïve Bayes assumption

- Given the class label y, the features are conditional independent of each other.
 - $P(x|y) = \prod_j p(x_j|y)$
 - x_j is the *j*-th feature, not *j*-th data point!
- How to understand?
 - All features independently affect the label.

Model p(x|y) with naïve Bayes assumption

Binary	·			
binary	y out	put `	$Y \in \cdot$	$\{0, 1\}$
	x_1	<i>x</i> ₂	<i>x</i> 3	
	0	0	0	
	0	0	1	Í
	0	1	0	Í
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	
	0 1 1	1 0 0	1 0 1	

Discussion: How many data points are needed to determine p(x|y) given binary output and d binary features?

2d

Why? When we use the first feature, we ignore all other features...

Naïve Bayes model

- Goal of probabilistic model:
 - $h(x) = \operatorname{argmax}_{y} P(y|x)$
 - $h(x) = \operatorname{argmax}_{y} \frac{P(y)P(x|y)}{P(x)}$
 - $h(x) = \operatorname{argmax}_{y} P(y) P(x|y)$
 - $h_{\text{Na\"ive}_{\text{Bayes}}}(x) = \operatorname{argmax}_{y} P(y) \prod_{j=1}^{d} P(x_j|y)$

- Bayes rule • $P(y|x) = \frac{P(y)P(x|y)}{P(x)}$
- Naïve Bayes assumption • $P(x|y) = \prod_j p(x_j|y)$

Example: Naïve Bayes model for email filter

Email ID	Contains "buy"	Contains "cheap"	Contains "free"	Label
1	Yes	Yes	No	Spam
2	No	No	Yes	Not Spam
3	Yes	No	Yes	Spam
4	No	Yes	No	Not Spam
5	Yes	Yes	Yes	Spam
6	No	No	No	Not Spam

- Naïve Bayes model: $h_{\text{Naïve}_{Bayes}}(x) = \operatorname{argmax}_{y} P(y) \prod_{j=1}^{d} P(x_j|y)$
- Step 1: calculate P(y)
- Step 2: calculate $P(x_j|y)$
- Step 3: prediction on [Yes, No, No]

Naïve Bayes model with continuous variables

- So far we assumed a binomial or discrete distribution for the data given the model (p(xⁱ|y))
- However, in many cases the data contains continuous features:
 - Height, weight, Levels of genes in cells, Brain activity
- Gaussian Naïve Bayes model:

 $x_i | y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

Checkpoint: Probabilistic models

- Probabilistic / Generative / Bayesian models are very powerful and interpretable method for modeling the world.
 - Customize ML models for your applications.
 - Explicitly model the dependence.
 - Naïve Bayes model is the simplest of them all!

Midterm exam

- What does the exam look like?
 - 70 min (12:05-1:15pm) on Thu Oct 24 at LC 5
 - Please arrive at 12pm!
 - Closed-book exam
 - Given individually (not in groups!)
 - Counts 20% towards your final grades
 - No make-up exam
- What to bring?
 - Your pen
- What not to bring?
 - Your book, note, lecture slide, or cheat sheet.

What are you expected to know?

- Basic mathematical tools
 - In our math review (Lecture 2-4)
 - Linear algebra, calculus and optimization, probability and statistics
 - Review Homework 1!

What are you expected to know?

- Basic concepts of machine learning
 - Classification and regression
 - Input space (feature space), output space (label space), hypothesis class
 - Confusion matrix of binary classification
 - Accuracy
 - Holdout / cross validation / hyperparameter
 - Problem of overfitting
 - Loss function
 - Linear model

What are you expected to know?

- Understanding how machine learning algorithms work
 - Why do we need surrogate loss in classification?
 - Why do we need SGD? Drawback of GD?
 - How to define a linear classifier / linear regression?
 - Why do we need SVM? Difference between linear classifier and SVM.
 - Why do we need regularization? How to apply it?
 - Key idea of maximum likelihood estimation.
 - Key assumption of Naïve Bayes models.

Announcement

- Homework 1 grades have been released.
 - Ask your group member who submitted the solution
- Instructor office hours
 - Cancelled on Tue Oct 15 & Tue Oct 22
 - A make-up office hour is scheduled at
 - 2-3pm on Thu Oct 17 at UAB 426 (last one before midterm exam!)
- Midterm presentation (Thu Oct 17)
 - 15 groups, each has 4 min
 - No credit towards your final grades
 - Use it as a practice opportunity!
 - Send slides to me by 11:59pm Wed Oct 16