

CSI 436/536 (Spring 2025) Machine Learning

Lecture 13: Error Decomposition

Chong Liu Department of Computer Science

Mar 31, 2025

Today

- Naïve Bayes model
- Generalization error by bias-variance decomposition
 - Understand the problem of overfitting
- Learning risk decomposition
 - Understand machine learning

Recap: Direct modeling p(x|y) is hard

Binary	y vec	tors,	2^3 ro	ows -
binary	y out	put `	$Y \in \overline{Y}$	$\{0, 1\}$
	x_1	<i>x</i> ₂	<i>x</i> 3	
	0	0	0	
	0	0	1	
	0	1	0	ĺ
	0	1	1	ĺ
	1	0	0	
	1	0	1	
	1	1	0	ĺ
	1	1	1	ĺ

1. At least 8 data points are needed to determine p(x|y).

2. At least 2^d data points are needed if there are d binary features.

Naïve Bayes assumption

- Given the class label y, the features are conditional independent of each other.
 - $P(x|y) = \prod_j p(x_j|y)$
 - x_j is the *j*-th feature, not *j*-th data point!
- How to understand?
 - All features independently affect the label.

Model p(x|y) with naïve Bayes assumption

Binary	y vec	tors,	2 ³ ro	ows -
binary	y out	put `	$Y \in \overline{X}$	$\{0,1\}$
	x_1	<i>x</i> ₂	<i>x</i> 3	
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

Discussion: How many data points are needed to determine p(x|y) given binary output and d binary features?

2d

Why? When we use the first feature, we ignore all other features...

Naïve Bayes model

- Goal of probabilistic model:
 - $h(x) = \operatorname{argmax}_{y} P(y|x)$
 - $h(x) = \operatorname{argmax}_{y} \frac{P(y)P(x|y)}{P(x)}$
 - $h(x) = \operatorname{argmax}_{y} P(y) P(x|y)$
 - $h_{\text{Na\"ive}_{\text{Bayes}}}(x) = \operatorname{argmax}_{y} P(y) \prod_{j=1}^{d} P(x_j|y)$

- Bayes rule • $P(y|x) = \frac{P(y)P(x|y)}{P(x)}$
- Naïve Bayes assumption • $P(x|y) = \prod_{j} p(x_{j}|y)$

In-class exercise: Naïve Bayes model for email filter

Email ID	Contains "buy"	Contains "cheap"	Contains "free"	Label
1	Yes	Yes	No	Spam
2	No	No	Yes	Not Spam
3	Yes	No	Yes	Spam
4	No	Yes	No	Not Spam
5	Yes	Yes	Yes	Spam
6	No	No	No	Not Spam

- Naïve Bayes model: $h_{\text{Naïve}_{Bayes}}(x) = \operatorname{argmax}_{y} P(y) \prod_{j=1}^{d} P(x_j|y)$
- Step 1: calculate P(y)
- Step 2: calculate $P(x_j|y)$
- Step 3: prediction on [Yes, No, No]

Checkpoint: Probabilistic models

- Probabilistic / Generative / Bayesian models are very powerful and interpretable method for modeling the world.
 - Customize ML models for your applications
 - Explicitly model the dependence
- Key task: Modeling P(x|y)
 - Maximum likelihood estimation
 - Data are identically and independently distributed (i.i.d.)
 - Naïve Bayes model
 - Features are independent given the label

So far, we have learned a lot of ML algorithms

- The key goal of ML algorithms is to
 - Minimize the generalization error
 - We want to train a learning algorithm that works well on test data
- The ultimate goal of ML algorithms is to
 - Learn the best hypothesis!
- What are the factors that systematically affect learning process?

Bias-variance decomposition

- Definitions:
 - Feature: *x*
 - Label: $y = f(x) + \epsilon$
 - Label generating function: f(x)
 - Noise: $\epsilon, E[\epsilon] = 0, Var[\epsilon] = \sigma^2$
 - Prediction: \hat{y}
- Bias:
 - $|f(x) E[\hat{y}]|$
- Variance:
 - $E[(\hat{y} E[\hat{y}])^2]$
- Generalization error:
 - $E[(y \hat{y})^2]$

- Generalization error decomposition:
 - $E[(y \hat{y})^2] = Variance + bias^2 + \sigma^2$
 - Bias:
 - fitting of learning algorithm
 - Variance:
 - effect of given dataset
 - Noise:
 - difficulty of the learning problem

Bias-variance trade-off

- Generalization error decomposition:
 - $E[(y \hat{y})^2] = Variance + bias^2 + \sigma^2$
- How to control the degree of training:
 - SGD: number of rounds
- Less training:
 - Model fitting is so weak, high bias
 - Underfitted
- Too much training:
 - Learned a lot of details of data, high variance
 - Overfitting

Loss, Empirical Risk, and Risk

• Loss function

$$\ell(h,(x,y))$$

• Empirical Risk function

$$\hat{R}(h, \text{Data}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, (x_i, y_i))$$

• (Population) Risk function

$$R(h, \mathcal{D}) = \mathbb{E}_{\mathcal{D}}[\ell(h, (x_i, y_i))]$$

Bayes optimal classifier, optimal classifier within the hypothesis class, Empirical Risk Minimizer

- Bayes Optimal classifier: $h_{\text{Bayes}} = \arg \min_{h} R(h)$
 - For 0-1 loss, the Bayes optimal classifier is

 $h_{\text{Bayes}} = \arg \max_{y} p(y|x) = \arg \max_{y} p(x|y)p(y)$

- Optimal (within hypothesis class) classifier $h^* = \arg \min_{h \in \mathcal{H}} R(h)$
- ERM Classifier $h_{\text{ERM}} = \arg \min_{h \in \mathcal{H}} \hat{R}(h)$
- My classifier $\hat{h} = My_Learning_Algorithm(Data)$

Risk Decomposition

$$\mathbb{E}[R(\hat{h})] - R(h_{\text{Bayes}})$$

$$\leq \mathbb{E}[\hat{R}(\hat{h}) - \hat{R}(h_{\text{ERM}})] + R(h^*) - R(h_{\text{Bayes}}) + \mathbb{E}[R(\hat{h}) - \hat{R}(\hat{h})]$$
Optimization error
Approximation error
Generalization error