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Recap: Support Vector Machines (SVM)

* Key idea of SVM:
e lfy=1wlx+b>1 L2
e lfy=—-1,wlx+b< -1

* Total margin between support

vectors:
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* Optimization problem of SVM:
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Recap: Philosophy of designing ML algorithms

* Regularization:
* Control the complexity of parameters
* Prevent overfitting
* Fun fact: L-2 regularization is associated with max margin classifier

* Optimization
* Toolbox of ML
* ML problem => optimization problem
* Direct solver, GD, SGD, and much more!
* Minimize the loss / parameter complexity / soft-margin tolerance

* Maximize the margin



Today

* Discriminative model vs generative model

* Maximum likelihood estimation
* Linear regression
* Logistic regression



So far we have learned a lot about ML, but...

* We learned how to * How did we come up with the
nypothesis classes in the first
e Specify a hypothesis class place?

* We brainstormed... and used

* Work out the possible shapes 1. decision trees

of decision boundaries 2. linear-classifiers, thre.sho.lding a
weighted linear combination of
features.

* Train a model by solving an * But how do we know the resulting
optimization problem decision boundaries are

appropriate for the problems we
hope to solve?



We learned about directly modelling the predictive
functions. There is another way... called
“Probabilistic modelling”

* We can model how the data is generated in the first place.

* Model the labeling process via a conditional distribution P(y|x). Thisis
known as a (probabilistic) discriminative model.

* Specifying decision-trees / linear classifiers / shapes of decision boundaries should
be considered non-probabilistic discriminative models.

* Model the joint distribution P(x, y). Often one models the label
distribution P(y) and a generative process P(x|y). Thisis known as a
generative model.



Discriminative models vs generative models

Discriminative Generative
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Discriminative model  Modeling Modeling P(y|x)
(how data can be predictive
separated?) function
Generative model Modeling P(x,y) by
(How data is generated?) label distribution

P(y) and generative
process P(x|y)
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Probabilistic modelling

* Hard prediction:
* h(x) = argmax,, P(y|x)
* “Bayes optimal”:
* If the label generative process is indeed P(y|x)

* Soft prediction P(y|x)
* Quantifying uncertainty
* More informative than the score function
* More interpretable / explainable



How to model P(y|x)?

* Bayes rule:
P(y)P(x
. P(y|x) = (y;(i) )
* Key idea:
* argmax,, P(y|x) < argmax, P(y)P(x|y)
e Why?
* ydoesn’tdepend on P(x).
* P(y) (distribution of label):

* Can be estimated by counting labels in training set.
* P(x|y) (data generating process)




Directly modeling P(x|y) is challenging

Binary vectors, 23 rows + 1. What is the number of data
binary output Y € {0,1} points needed to estimate

p(x|y)?

2. What happens if there are
d binary features?

We need maximum likelihood estimation!
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Recap: Bernoulli Distribution X ~ Ber(p)

Probability Mass Function of a Bernoulli Distribution

. if x =1,
PX=x)=3]
3 1—p ifx=0.
&

0.0 5 J

Random Variable X
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Recap: Gaussian distribution X ~ N (x,0°)

B2 (X)
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Maximum likelihood estimation

* Used since Gauss, Laplace, etc....
* Popularized / carefully analyzed by Ronald Fisher.

* Which distribution is more *likely* to have produced the data?

I]_{lgl%( fDataNP (Data)
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What is the difference between probability
and likelihood?

 P(Data; Parameter)
* |Ifitis a function of the data, then it’s probability.

* Ifitis a function of the parameter while the data is fixed, thenitis
likelihood.

13



Estimating the mean of Gaussian distribution

* Data X1y Xn "5 N (1, 02)
* Likelihood: 0\ 2
f(x) = : exp (—1 (x M) )
o\ 2m 2 o

* The MLE problem:
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