

CSI 401 (Fall 2025) Numerical Methods

Lecture 11: Optimization: Linear Programming

Chong Liu

Department of Computer Science

Oct 20, 2025

What's Linear Programming (LP)?

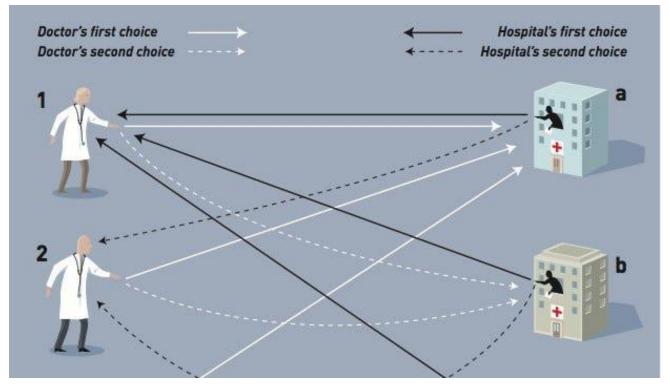
- An optimization problem of linear objective functions with linear constraints.
 - Objective function can be minimized or maximized
 - Constraints can be in equalities or inequalities
 - All functions must be linear functions

• 2 examples:
$$\min x_1 + 2x_2 \qquad \max x_1 + 2x_2 \\ \mathrm{s.t.} \ x_1 + x_2 \leq 3 \qquad \mathrm{s.t.} \ x_1 + x_2 = 3 \\ x_1 \geq 1$$

• Discussion: Could you propose more linear programming problems?

Application of LP: Matching problem

- Company (hospital) Candidate (doctor) matching problem
- Each doctor:
 - Fits one position
- Doctors/hospitals:
 - Have their preferences
- Goal:
 - Put doctors to positions
 - Such that overall best match



Application of LP: Matching problem

- Company (hospital) Candidate (doctor) matching problem
- Suppose now we have 4 doctors and 4 hospitals, preferences are listed in descending order in two ways:
 - Alice: Hospital A, Hospital B, Hospital C, Hospital D
 - Bob: Hospital B, Hospital C, Hospital A, Hospital D
 - Claire: Hospital C, Hospital D, Hospital A, Hospital B
 - David: Hospital D, Hospital A, Hospital B, Hospital C
 - Hospital A: David, Alice, Bob, Claire
 - Hospital B: Bob, Claire, Alice, David
 - Hospital C: Claire, David, Bob, Alice
 - Hospital D: Alice, David, Claire, Bob

Application of LP: Matching problem

- Company (hospital) Candidate (doctor) matching problem
 - $x_{ij} \in \{0,1\}$ denotes assignment of doctor i to hospital j
 - $c_{ij} \in [0, 1]$ denotes the match between doctor i and hospital j
 - The objective function maximizes the overall match
 - 1st constraint ensures each hospital can hire a doctor
 - 2nd constraint ensures each doctor can find a job

$$egin{aligned} \max \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} x_{ij} \ ext{s.t.} \ \sum_{i=1}^{N} x_{ij} = 1, \ orall j = 1, 2, \dots, N \ & \sum_{j=1}^{N} x_{ij} = 1, \ orall i = 1, 2, \dots, N \end{aligned}$$

Application of LP: Optimal transport

Boston demands 25

 Suppose you run a company, which has 4 factories and 3 big markets, each in a different city.

Buffalo supplies 15 Syrac

Syracuse supplies 15

Rochester supplies 20

Albany supplies 35

New York City demands 30

Philadelphia demands 30

- You job is to design the optimal transportation route that has minimum transportation cost of your products
 - Each route (supply to demand) costs differently
 - Each factory has its supply capacity
 - Each market must be well supplied to maximize your profit

Application of LP: Optimal transport

- p_i is the supply capacity of each factory
- d_i is the demand of each market
- x_{ij} is the amount of products that are transported from factory i to market j
- c_{ij} is the transportation cost per product from factory i to market j
- Problem setup:

$$egin{aligned} \min \sum_{i=1}^N \sum_{j=1}^M c_{ij} x_{ij} \ \mathrm{s.t.} \ \sum_{i=1}^N x_{ij} = d_j, \ orall j = 1, 2, \ldots, M \ \sum_{i=1}^M x_{ij} \leq p_i, \ orall i = 1, 2, \ldots, N \end{aligned}$$

Applications of LP: Almost everywhere

Resource allocation

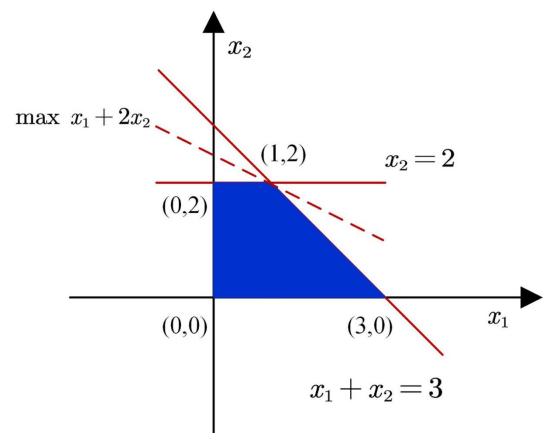
Transportation and logistics

Portfolio optimization

 Manufacturing and production scheduling

$$egin{array}{l} ext{maximize} \ x_1 + 2x_2 \ ext{subject to} \ x_1 + x_2 \leq 3 \ x_2 \leq 2 \ x_1 \geq 0 \ x_2 \geq 0 \end{array}$$

- For most 2-d LP problems,
 - 1. We can draw it's feasible region
 - 2. And move it's objective function



In-class exercise: Draw the feasible region defined by constraints.

- In-class exercise
 - Max profit in product planning

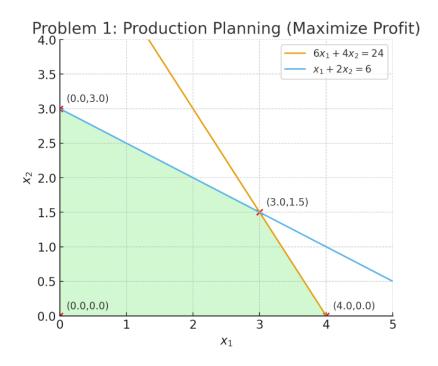
Maximize
$$Z = 5x_1 + 4x_2$$

$$6x_1 + 4x_2 \le 24$$
 (Machine hours)

$$x_1 + 2x_2 \le 6$$
 (Labor hours)

$$x_1,x_2\geq 0$$

- In-class exercise
 - Max profit in product planning



- In-class exercise
 - Dietary cost optimization

$$Minimize C = 3x_1 + 2x_2$$

$$x_1 + x_2 \geq 4$$
 (Protein requirement)

$$2x_1 + x_2 \geq 5$$
 (Vitamin requirement)

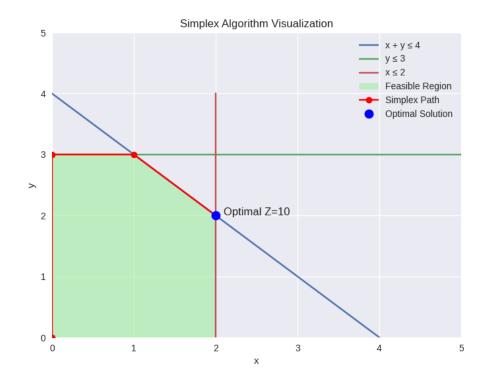
$$x_1,x_2\geq 0$$

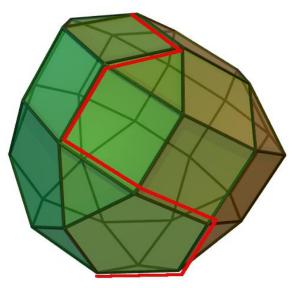
- In-class exercise
 - Dietary cost optimization



More algorithms for LP

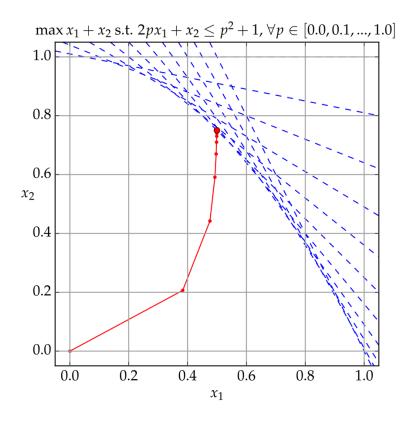
- Simplex method
 - Proposed by George Dantzig
 - During WWII
 - Key idea: since all optimal solutions sit at the edge of convex feasible region, why don't we search over the edge?
 - Pro: Efficient when number of variables is small
 - Con: Exponential time complexity in worst case
 - Python: scipy.optimize.linprog(method='simplex')
 - Matlab: linprog()





More algorithms for LP

- Interior point method
 - Key idea: start from a point in the feasible region, iteratively move towards the optimal solution.
 - Discussion: it reminds you which algorithm that we just learned in Lecture 10?
 - Pros: Can handle large number of variables in LP
 - Cons: Convergence is sensitive to choices of parameters



Dual problem of linear programming

• For every **primal** linear program, there is an associated **dual** LP that expresses the same optimization problem from a different perspective.

- Primal LP:
 - Max $c^T x$ s.t. $Ax \leq b$, $x \geq 0$,
- Dual LP:
 - Min $b^T y$ s.t. $A^T y \ge c$, $y \ge 0$.

• They are mathematically linked — this is not coincidence, but a property of convex optimization and linear algebra.

Dual problem of linear programming

- Economic Interpretation
 - The dual variables y represent **shadow prices** the value of relaxing each constraint by one unit.
 - In a resource allocation problem, each y_i tells how much the objective (profit) would improve if resource i were increased slightly.

• Primal:

Max
$$3x_1 + 2x_2$$

s.t. $x_1 + 2x_2 \le 8$, $4x_1 + 3x_2 \le 12$, $x_1, x_2 \ge 0$

Dual:

Minimize
$$8y_1 + 12y_2$$

s.t. $y_1 + 4y_2 \ge 3$, $2y_1 + 3y_2 \ge 2$, $y_1, y_2 \ge 0$

Duality Theorems

- Weak Duality:
 - For any feasible x (primal) and y (dual), $c^T x \leq b^T y$.
 - The dual provides an upper bound (for maximization problems).

- Strong Duality:
 - At the optimal solutions x^* , y^* , $c^Tx^* = b^Ty^*$.
 - Solving one problem solves the other they share the same optimal value.

Dual problem of linear programming

Why we study dual problems?

- Duality helps:
 - Check optimality: If primal and dual feasible solutions give the same objective, both are optimal.
 - **Perform sensitivity analysis:** Dual variables show how changes in constraints affect the outcome.
 - **Simplify computation:** Some LPs are easier to solve in dual form (e.g., when constraints >> variables).