

CSI 436/536 (Fall 2024) Machine Learning

Lecture 10: Regularization

Chong Liu Assistant Professor of Computer Science

Oct 1, 2024

Announcement

- Homework 1 is due at midnight!
 - Late submissions before tomorrow midnight receive only **half of earned** credits.
 - Submissions after tomorrow midnight receive **NO** credits.
- Homework 2 will be released later today.

Recap: Linear regression

- Stochastic Gradient Descent (SGD)
 - Using a stochastic approximation of the gradient:

$$\theta_{t+1} = \theta_t - \eta_t \hat{\nabla} f(\theta_t)$$

- Calculated by one data point randomly sampled from dataset
- Linear regression
 - $\hat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T} w y_{i})^{2} = \operatorname{argmin}_{w} \|Xw y\|_{2}^{2}$
 - Direct solver: $\hat{w} = (X^T X)^{-1} X^T y$
 - GD: $w \leftarrow w 2\eta X^T (Xw y)$, time complexity O(ndT)
 - SGD: $w \leftarrow w 2\eta x_i^T (x_i^T w y_i)$, time complexity O(dT)

Recap: Two problems of supervised learning

	Classif	Regression	
	Binary classification	Multi-class classification	
Feature space	\mathbb{R}^{d}	\mathbb{R}^{d}	\mathbb{R}^{d}
Label space	{-1, 1}	{1, 2, 3,, K}	\mathbb{R}
Performance metric	Classification error (0-1 loss) for test data	Classification error (0-1 loss) for test data	Mean Square Error
Popular surrogate loss (for training)	Logistic loss / exponential loss / square loss	Multiclass logistic loss (Cross-Entropy loss)	Square loss

Today

- Linear regression in curve fitting
- Problem of overfitting
- Regularization prevents overfitting

Example of regression - Curve fitting: how to train a function fitting blue dots?

- Input:
 - $x \in \mathcal{X} = [0, 1] \subset \mathbb{R}$
- Output:
 - $y \in \mathcal{Y} = \mathbb{R}$
- Data:
 - $(x_1, y_1), ..., (x_n, y_n)$
- Ground truth:

 $f_0(x) = \sin(2\pi x)$

• Hypothesis?

$$f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

Polynomial regression under square loss

Problem of overfitting!

Recap: The problem of Overfitting

The green line represents an overfitted model.

- 1. Best follows the training data
- 2. Too dependent on training data
- More likely to fail (higher error rate) than black line on new unseen test data

Discussion: examples of overfitting in our learning as human beings?

Regularization prevents overfitting!

• Same model:

$$f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

How does regularization work?

- Regularization controls the parameter complexity (norms of parameter).
 - *p*-norm regularized least square

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \|X\theta - y\|_2^2 + \lambda \|\theta\|_p^p$$

- In-class exercise:
 - Find L-2 norm of x = [2, -1, -3, 1] and x' = [1, -0.5, -1.5, 0.5]
 - Plot $f(x) = 2 x 3x^2 + x^3$ and $g(x) = 1 0.5x 1.5x^2 + 0.5x^3$ in [-2,4]

Different choices of regularization

• p-norm regularized least square

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \|X\theta - y\|_2^2 + \lambda \|\theta\|_p^p$$

- when p=2, this is called "Ridge Regression"
- when p=1, this is called "Lasso"

• In-class exercise: work out the direct solver for Ridge Regression.

Fitted curve as L-2 regularization weight increases

11

The mean square errors as we adjust the L2 regularization weight

- Why is test error in a Ushaped curve?
 - Due to bias-variance tradeoff (after midterm)
 - Regularization weight cannot be too large or too small

• Discussion:

Why training error increases with regularization weight?

Case study: Housing price dataset

• Example data

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	Target
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

- Questions one can ask:
 - How well can one use the 8 features to predict house price (i.e., Target)?
 - Which feature is more predictive with house price?
 - What is the effect of regularization?

The MSE vs regularization weight

The "Regularization path" for L2-regularization

How to interpret the fitted coefficients?

- The "sign" indicates positive or negative correlation with the label
- The "magnitude" indicates how strongly correlated.

Summary

- Linear regression
 - Solving the Least Square problem {with GD, SGD and direct solver}
- Regularization
 - Controls the parameter complexity of the fitted function
 - Prevents overfitting!
 - Different regularization: L-2 (most popular) and L-1
- Case study: Predict Housing Price
 - Effect of regularization on training test and test error
 - Regularization path (Effect of regularization on coefficients)