

CSI 401 (Fall 2025) Numerical Methods

Lecture 10: Optimization: Gradient Descent

Chong Liu

Department of Computer Science

Oct 20, 2025

Recap: Matrix rank of A ($m \times n$ matrix)

- Definition:
 - Maximal number of linearly independent columns or maximal number of linearly independent rows.
- Two examples: Find ranks using Gaussian Elimination.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

• Rank is number of pivots after Gaussian Elimination.

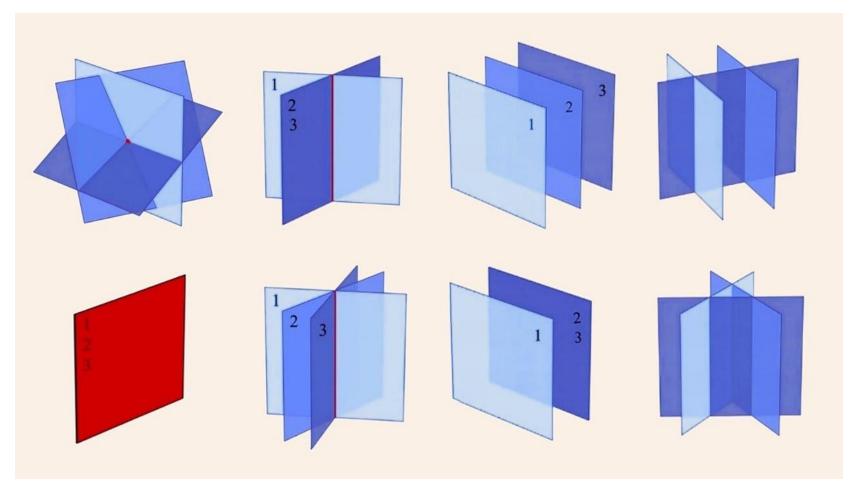
Recap: Summary of Conditions for Solutions of a Linear System Ax = b

Case	Rank Condition	Number of Solutions	Geometric Interpretation
No Solution	$\mathrm{rank}(A) < \mathrm{rank}([A \mid \mathbf{b}])$	None (inconsistent system)	Hyperplanes do not intersect (contradictory equations)
Unique Solution	$\mathrm{rank}(A) = \mathrm{rank}([A \mid \mathbf{b}]) = n$	Exactly one	Hyperplanes intersect at a single point
Infinitely Many Solutions	$\mathrm{rank}(A) = \mathrm{rank}([A \mid \mathbf{b}]) < n$	Infinitely many	Hyperplanes intersect along a line, plane, or higher-dimensional subspace

Recap: Geometric view of solutions (3-d case)

• Discussion:

- Which figure shows a unique solution?
- Which figure shows infinitely many solutions?
- Which figure shows no solution?

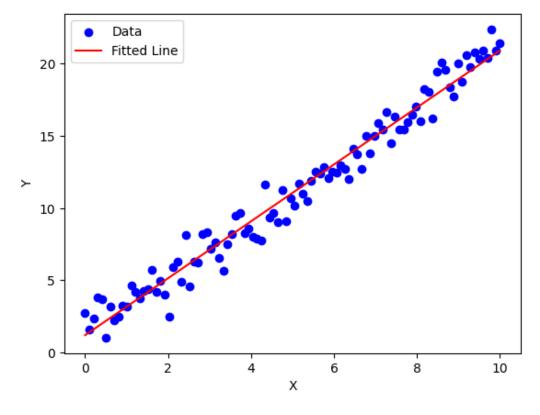


Recap: Linear model for housing price prediction

- In vector form:
 - Price $(x) = x^{\mathrm{T}} w$
 - $x = [x_1, x_2, ..., x_8]$: feature vector
 - $w = [w_1, w_2, ..., x_8]$: parameter vector
- As long as we find a good w, we have a good linear model.
- In a general form:
 - Xw
 - X is a $n \times d$ matrix.
 - *n* is the number of houses.
 - d is the number of features for describing the house.
 - w is a d-dimensional vector.

Recap: Considering conditions of linear systems

- In real-world applications, there are many challenges.
 - No solution
 - Noisy data
 - Overdetermined systems (most common case)
 - Fitting a hyperplane (a line in 2-d) to too many data points.
- So our goal reduces to find the an approximate w that best describes the data!
- How?



Recap: The objective function for learning linear regression under square loss

•
$$\widehat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2 = \operatorname{argmin}_{w} ||Xw - y||_2^2$$

aka: Ordinary Least Square (OLS)

• In-class exercise: solve this optimization problem by setting gradient of the objective function to 0.

Agenda

Gradient Descent

- How to solve linear regression?
 - Direct solver
 - Gradient Descent
- Improved version of GD: Stochastic gradient descent

Time complexity analysis

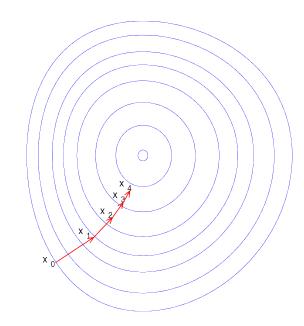
How do we optimize a continuously differentiable function in general?

• The problem:
$$\min_{\theta} f(\theta)$$

• Discussion: How do you solve this optimization problem?

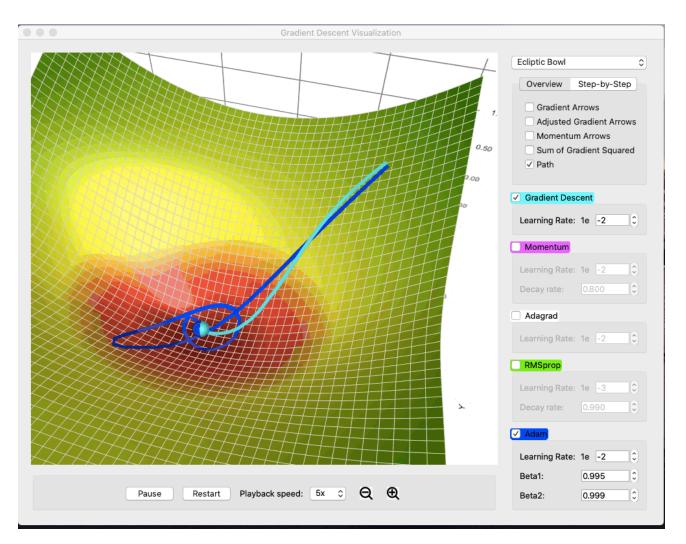
Gradient descent in iterations

$$\theta_{t+1} = \theta_t - \eta_t \nabla f(\theta_t)$$



Gradient Descent Demo in 2-D

- An excellent demo tool:
 - https://github.com/lilipa ds/gradient_descent_viz



Gradient descent for quadratic function

• $\min f(x) = x^2$

- Follow me on the first two examples:
- 1. Find x_4 given $x_0 = 2$, $\eta = 0.1$
- 2. Find x_4 given $x_0 = 2$, $\eta = 0.4$
- In-class exercise questions:
- 1. Find x_4 given $x_0 = 4$, $\eta = 0.4$
- 2. Find x_4 given $x_0 = 2$, $\eta = 1.5$ (what did you find?)

Condition of convergence of gradient descent

- Smoothness (Lipschitz-continuous gradient)
 - There exists L > 0 such that
 - $\| \nabla f(x) \nabla f(y) \| \le L \| x y \| \quad \forall x, y$
 - L is called the Lipschitz constant of the gradient.
 - Intuitively: the function's curvature isn't too steep.
- If f is L-Lipschitz smooth, GD converges to a local minimum when $0 < \eta < \frac{2}{L}$.

 - If $\eta > \frac{2}{L}$:divergence If $\eta = \frac{1}{L}$:optimal rate for fixed-step GD in many cases

Gradient descent for quadratic function

• Without proof, L = 2 for x^2

• $\min f(x) = x^2$

- In-class exercise questions:
- 1. Find x_4 given $x_0 = 2$, $\eta = 0.5$
- 2. Find x_4 given $x_0 = 2$, $\eta = 1$

Discussion: What did you find?

Back to linear regression: How to solve it using Gradient Descent?

•
$$\widehat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2 = \operatorname{argmin}_{w} ||Xw - y||_2^2$$

- In-class exercise: Write the GD updating rule for solving w.
 - $w \leftarrow w 2\eta X^T(Xw y)$

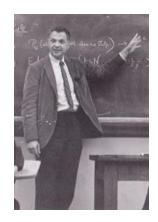
Checkpoint

- Least square:
 - Heavily used in practice, due to
 - Large datasets (many data points)
 - Noisy data
 - No solution based on conditions of linear systems
- Linear regression
 - $\widehat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_i^T w y_i)^2 = \operatorname{argmin}_{w} ||Xw y||_2^2$
 - Direct solver: $\widehat{w} = (X^T X)^{-1} X^T y$
 - GD: $w \leftarrow w 2\eta X^T (Xw y)$

Stochastic Gradient Descent (Robbins-Monro 1951)

Gradient descent

$$\theta_{t+1} = \theta_t - \eta_t \nabla f(\theta_t)$$



Herbert Robbins 1915 - 2001

- Stochastic gradient descent
 - Using a stochastic approximation of the gradient:

$$\theta_{t+1} = \theta_t - \eta_t \hat{\nabla} f(\theta_t)$$

A natural choice of SGD in machine learning

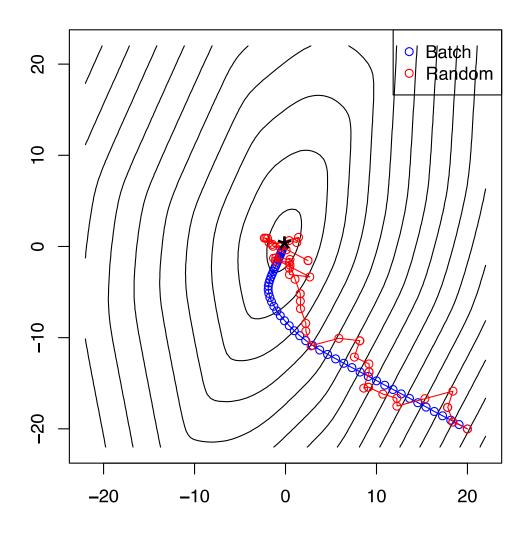
Recall that

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\theta, (x_i, y_i))$$

 SGD samples a data point i uniformly at random while GD uses all data!

• Use
$$abla_{ heta}\ell(heta,(x_i,y_i))$$

Illustration of GD vs SGD



Time complexity:

GD: $O(nd * n_{iterations})$

SGD: $O(d * n_{iterations})$

How to choose the step sizes / learning rates?

- In practice:
 - Fixed learning rate for SGD is usually fine.
 - If it diverges, decrease the learning rate.

The power of SGD

- Extremely simple:
 - A few lines of code
- Extremely scalable
 - Just a few pass of the data, no need to store the data
- Extremely general:
 - In addition to linear regression, in practice it can solve most optimization problems of differentiable functions
 - E.g., Training neural networks, Transformer, Generative Pretrained Transformer
 - Foundational algorithm of the AI revolution as we see today!

Time complexity of direct solver and GD/SGD for solving linear regression

- Direct solver
 - $O(nd^2 + d^3)$
- GD:
 - O(ndT)
- SGD:
 - O(dT)
- $T = n_{iterations}$