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Recap: Matrix rank of A (m X n matrix)

* Definition:
* Maximal number of linearly independent columns or maximal number of
linearly independent rows.

* Two examples: Find ranks using Gaussian Elimination.
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* Rank is number of pivots after Gaussian Elimination.

_ o W
o O =
O N
= o W

|



Recap: Summary of Conditions for Solutions
of a Linear SystemAx = Db

Case Rank Condition Number of Solutions Geometric Interpretation
No Solution rank(A) < rank(|[A4 | b)) None (inconsistent Hyperplanes do not intersect
system) (contradictory equations)
Unique Solution rank(A) = rank([A | b]) =n Exactly one Hyperplanes intersect at a single
point
Infinitely Many Solutions rank(A) = rank(|A | b]) <n Infinitely many Hyperplanes intersect along a line,

plane, or higher-dimensional

subspace



Recap: Geometric view of solutions (3-d case)

* Discussion:

* Which figure
shows a unique
solution?

* Which figure
shows infinitely
many solutions?

* Which figure
shows no
solution?




Recap: Linear model for housing price
prediction

* |n vector form:

e Price(x) = xTw

* X = |xq, Xy, ..., Xg]: feature vector
* w = |wq, W, ..., Xg]: parameter vector

* As long as we find a good w, we have a good linear model.

* Inageneral form:
« Xw

e Xisan Xd matrix.

* nisthe number of houses.
* disthe number of features for describing the house.

e wis ad-dimensional vector.



Recap: Considering conditions of linear
systems

* In real-world applications, there are
many challenges.

* No solution .

® Data

* Noisy data o | — fitted Line

* Overdetermined systems (most
common case)

* Fitting a hyperplane (a line in 2-d) to too
many data points.
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* So our goal reduces to find the an
approximate w that best describes 51
the data!

* How? " : ; ; s b



Recap: The objective function for learning
linear regression under square loss

N .1 .
* W = argmin,, ?zl(xiTW — y;)? = argmin,, || Xw — y||5

* aka: Ordinary Least Square (OLS)

* In-class exercise: solve this optimization problem by setting
gradient of the objective function to 0.



Agenda

e Gradient Descent

* How to solve linear regression?
* Direct solver
* Gradient Descent

* Improved version of GD: Stochastic gradient descent

* Time complexity analysis



How do we optimize a continuously
differentiable function in general?

* The problem: m@in f(6)

* Discussion: How do you solve this optimization problem?

e Gradient descent in iterations

Ory1 = 0: — 0V f(04)




Gradient Descent Demo in 2-D

e An excellent demo tool:
* https://github.com/lilipa

ds/gradient_descent_viz

Pause

Restart

Playback speed:

5x
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|v| Path
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LearningRate: 1e -2 |
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https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz

Gradient descent for quadratic function

* min f(x) = x?

* Follow me on the first two examples:
1. Find x4, givenxy = 2,1 = 0.1
2. Findx,givenxy, =2,n =04

* In-class exercise questions:
1. Find x4 givenxyg = 4,1 = 0.4
2. Find x4 given xy = 2,1 = 1.5 (what did you find?)
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Condition of convergence of gradient descent

* Smoothness (Lipschitz-continuous gradient)
* There exists L > 0 such that

c NV =V ISLIlx—yll Vx,y
* Lis called the Lipschitz constant of the gradient.

* |Intuitively: the function’s curvature isn’t too steep.

o If fis L-Lipschiztz smooth, GD converges to a local minimum
when 0 <7n < .
*Ifn > % :divergence

* Ifn = % :optimal rate for fixed-step GD in many cases
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Gradient descent for quadratic function

* Without proof, L = 2 for x?

e min f(x) = x*

* In-class exercise questions:
1. Find x, givenxy, = 2,1 = 0.5
2. Findx,givenxy, =2,n=1

Discussion: What did you find?
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Back to linear regression: How to solve it
using Gradient Descent?

. .1 .
* W = argmin,, — n . (x/w—1y)? = argmin,, || Xw — y||5

* In-class exercise: Write the GD updating rule for solving w.
cwew—2nXT'(Xw —17y)
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Checkpoint

* Least square:

* Heavily used in practice, due to
* Large datasets (many data points)
* Noisy data
* No solution based on conditions of linear systems

* Linear regression
1

¢« W= argmin,, — n L (x/w—v)? = argmin,, || Xw — y||3

* Directsolver: w = (XTX)"1XTy
e GD:w «w —2nXT(Xw —y)
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Stochastic Gradient Descent
(Robbins-Monro 1951)

e Gradient descent

Ory1 = 0: — 0V f(0:)

* Stochastic gradient descent
* Using a stochastic approximation of the gradient:

Or 1 = 0 — 0V £(0;)

" I i
Herbert Robbins
1915 -2001
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A natural choice of SGD in machine learning

* Recall that
min — 000, (x;,
min — Z i Yi))

* SGD samples a data point i uniformly at random while GD uses all
data!

e Use VQZ(H, (aji) y’b))
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lllustration of GD vs SGD

R - 7 o Hafr

Time complexity:

GD: O(nd * n_iterations)
SGD: 0(d * n_iterations)




How to choose the step sizes / learning rates?

* In practice:
* Fixed learning rate for SGD is usually fine.

* If it diverges, decrease the learning rate.
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The power of SGD

* Extremely simple:
 Afew lines of code

* Extremely scalable
* Just afew pass of the data, no need to store the data

* Extremely general:

* |n addition to linear regression, in practice it can solve most optimization
problems of differentiable functions
* E.g., Training neural networks, Transformer, Generative Pretrained Transformer

* Foundational algorithm of the Al revolution as we see today!
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Time complexity of direct solver and GD/SGD
for solving linear regression

 Direct solver
e 0(nd? + d?)
e GD:
* O(ndT)
e SGD:
« 0(dT)

e T' = n_iterations
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