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Recap: Matrix rank of 𝐴 (𝑚× 𝑛 matrix)

• Definition:
• Maximal number of linearly independent columns or maximal number of 

linearly independent rows.

• Two examples: Find ranks using Gaussian Elimination.

• Rank is number of pivots after Gaussian Elimination.
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Recap: Summary of Conditions for Solutions 
of a Linear System 𝐴x = b
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Recap: Geometric view of solutions (3-d case)

• Discussion:
• Which figure

shows a unique
solution?

• Which figure
shows infinitely
many solutions?

• Which figure
shows no
solution?
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Recap: Linear model for housing price
prediction
• In vector form:

• Price 𝑥 = 𝑥T𝑤
• 𝑥 = [𝑥1, 𝑥2, … , 𝑥8]: feature vector
• 𝑤 = [𝑤1, 𝑤2, … , 𝑥8]: parameter vector

• As long as we find a good 𝑤, we have a good linear model.

• In a general form:
• 𝑋𝑤

• 𝑋 is a 𝑛 × 𝑑 matrix.
• 𝑛 is the number of houses.
• 𝑑 is the number of features for describing the house.

• 𝑤 is a 𝑑-dimensional vector.
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Recap: Considering conditions of linear
systems
• In real-world applications, there are

many challenges.
• No solution
• Noisy data
• Overdetermined systems (most

common case)
• Fitting a hyperplane (a line in 2-d) to too

many data points.

• So our goal reduces to find the an
approximate 𝑤 that best describes
the data!

• How?
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Recap: The objective function for learning
linear regression under square loss

• ෝ𝑤 = argmin𝑤
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖

𝑇𝑤 − 𝑦𝑖)
2 = argmin𝑤 𝑋𝑤 − 𝑦 2

2

• aka: Ordinary Least Square (OLS)

• In-class exercise: solve this optimization problem by setting
gradient of the objective function to 0.
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Agenda

• Gradient Descent

• How to solve linear regression?
• Direct solver
• Gradient Descent

• Improved version of GD: Stochastic gradient descent

• Time complexity analysis
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How do we optimize a continuously 
differentiable function in general?

• The problem:

• Discussion: How do you solve this optimization problem?

• Gradient descent in iterations
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Gradient Descent Demo in 2-D

• An excellent demo tool:
• https://github.com/lilipa

ds/gradient_descent_viz
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Gradient descent for quadratic function

• min 𝑓(𝑥) = 𝑥2

• Follow me on the first two examples:
1. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.1

2. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.4

• In-class exercise questions:
1. Find 𝑥4 given 𝑥0 = 4, 𝜂 = 0.4
2. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 1.5 (what did you find?)
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Condition of convergence of gradient descent

• Smoothness (Lipschitz-continuous gradient)
• There exists 𝐿 > 0 such that

• ∥ ∇𝑓 𝑥 − ∇𝑓 𝑦 ∥≤ 𝐿 ∥ 𝑥 − 𝑦 ∥ ∀𝑥, 𝑦
• 𝐿 is called the Lipschitz constant of the gradient.

• Intuitively: the function’s curvature isn’t too steep.

• If 𝑓 is 𝐿-Lipschitz smooth, GD converges to a local minimum
when 0 < 𝜂 <

2

𝐿
.

• If 𝜂 > 2

𝐿
 :divergence

• If 𝜂 = 1

𝐿
 :optimal rate for fixed-step GD in many cases
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Gradient descent for quadratic function

• Without proof, 𝐿 = 2 for 𝑥2

• min 𝑓(𝑥) = 𝑥2

• In-class exercise questions:
1. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.5

2. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 1

Discussion: What did you find?
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Back to linear regression: How to solve it
using Gradient Descent?

• ෝ𝑤 = argmin𝑤
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖

𝑇𝑤 − 𝑦𝑖)
2 = argmin𝑤 𝑋𝑤 − 𝑦 2

2

• In-class exercise: Write the GD updating rule for solving w.
• 𝑤 ← 𝑤 − 2𝜂𝑋𝑇 𝑋𝑤 − 𝑦
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Checkpoint

• Least square:
• Heavily used in practice, due to

• Large datasets (many data points)
• Noisy data
• No solution based on conditions of linear systems

• Linear regression
• ෝ𝑤 = argmin𝑤

1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖

𝑇𝑤 − 𝑦𝑖)
2 = argmin𝑤 𝑋𝑤 − 𝑦 2

2

• Direct solver: ෝ𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

• GD: 𝑤 ← 𝑤 − 2𝜂𝑋𝑇 𝑋𝑤 − 𝑦
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Stochastic Gradient Descent
(Robbins-Monro 1951)
• Gradient descent

• Stochastic gradient descent
• Using a stochastic approximation of the gradient:
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Herbert Robbins
1915 - 2001



A natural choice of SGD in machine learning

• Recall that 

• SGD samples a data point 𝑖 uniformly at random while GD uses all
data!

• Use 
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Illustration of GD vs SGD
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Time complexity:

GD: 𝑂(𝑛𝑑 ∗ n_iterations)
SGD: 𝑂(𝑑 ∗ n_iterations)



How to choose the step sizes / learning rates?

• In practice:

• Fixed learning rate for SGD is usually fine.

• If it diverges, decrease the learning rate.
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The power of SGD

• Extremely simple:
• A few lines of code

• Extremely scalable
• Just a few pass of the data, no need to store the data

• Extremely general: 
• In addition to linear regression, in practice it can solve most optimization

problems of differentiable functions
• E.g., Training neural networks, Transformer, Generative Pretrained Transformer

• Foundational algorithm of the AI revolution as we see today!
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Time complexity of direct solver and GD/SGD
for solving linear regression
• Direct solver

• 𝑂(𝑛𝑑2 + 𝑑3)

• GD:
• 𝑂(𝑛𝑑𝑇)

• SGD:
• 𝑂(𝑑𝑇)

• 𝑇 = n_iterations
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