

CSI 436/536 (Fall 2024) Machine Learning

Lecture 9: Linear Regression

Chong Liu Assistant Professor of Computer Science

Sep 26, 2024

Recap: Loss and Gradient Descent

- 0-1 loss in linear classifier
 - Hard to optimize!

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(h_w(x_i) \neq y_i)$$

- Surrogate loss
 - Easy to optimize (continuous, convex, differentiable)
 - Examples: squared loss, logistic loss, exponential loss, ...
- Gradient Descent (GD)

$$\theta_{t+1} = \theta_t - \eta_t \nabla f(\theta_t)$$

Recap: Gradient Descent Demo in 2-D

- An excellent demo tool:
 - <u>https://github.com/lilipa</u> <u>ds/gradient_descent_viz</u>

Today

- Stochastic Gradient Descent (SGD)
- Linear regression
- Use SGD to solve linear regression problem!

Gradient of logistic loss for learning a linear classifier

• The function to minimize is

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \cdot x_i^T w))$$

• In-class exercise: Calculate the gradient of loss function w.r.t w

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{\exp(-y_i \cdot x_i^T w)}{1 + \exp(-y_i \cdot x_i^T w)} (-y_i x_i)$$

Hint:

- Apply the chain rule.
- $d \log(x) / dx = 1/x$
- $d \exp(x) / dx = \exp(x)$

Drawback: Gradient Descent (GD) uses all data to do one update.

Key question: Is there an efficient way to optimize loss function?

Stochastic Gradient Descent (Robbins-Monro 1951)

• Gradient descent

$$\theta_{t+1} = \theta_t - \eta_t \nabla f(\theta_t)$$

Herbert Robbins 1915 - 2001

- Stochastic gradient descent
 - Using a stochastic approximation of the gradient:

$$\theta_{t+1} = \theta_t - \eta_t \hat{\nabla} f(\theta_t)$$

A natural choice of SGD in machine learning

• Recall that $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\theta, (x_i, y_i))$

- SGD samples a data point *i* uniformly at random while GD uses all data!
 - Use $abla_{ heta}\ell(heta,(x_i,y_i))$

Illustration of GD vs SGD

Time complexity:

GD: $0(nd * n_{iterations})$ SGD: $0(d * n_{iterations})$

Intuition of the SGD algorithm on the "Spam Filter" example $\nabla \ell(w, (x_i, y_i)) = \frac{\exp(-y_i \cdot x_i^T w)}{1 + \exp(-y_i \cdot x_i^T w)} (-y_i x_i)$

Scalar > 0: ≈ 0 if the prediction is correct (no update) ≈ 1 otherwise (update)

Vector of dimension d: provides the direction of the gradient

Given an email example [1, -1, 0.0375, 80] where 0.0375 is proportion of misspelled words. Its y = 1 means spam.

How will the SGD update change the weight vector?

$$\theta_{t+1} = \theta_t - \eta_t \hat{\nabla} f(\theta_t)$$

If you make a mistake, move the weight towards the direction such that you will be less likely to make the same mistake in the future.

How to choose the step sizes / learning rates?

- In practice:
 - Use cross-validation on validation dataset.
 - Fixed learning rate for SGD is usually fine.
 - If it diverges, decrease the learning rate.

The power of SGD

- Extremely general:
 - Specify an end-to-end differentiable score function
 - E.g., a huge neural network.
- Extremely simple:
 - A few lines of code
- Extremely scalable
 - Just a few pass of the data, no need to store the data

Checkpoint

- Learning a linear classifier:
 - It's hard to directly optimize 0-1 loss
 - Find a surrogate loss
 - Continuous
 - Convex
 - Differentiable
- Gradient descent
 - Calculating gradient / making sense of gradient
 - Improving GD with Stochastic Gradient Descent

Linear regression example: Housing price

- Case study:
 - 8 features:

- MedInc median income in block group
- HouseAge median house age in block group
- AveRooms average number of rooms per household
- AveBedrms average number of bedrooms per household
- Population block group population
- AveOccup average number of household members
- Latitude block group latitude
- Longitude bloc
 - block group longitude

- 1 label: house price
- Discussion: What are they?
 - Feature space (input set)
 - Label space (output set)
 - Linear model
 - Performance metric
 - Loss function

Regression for different problems

- Prediction problem
 - How well can one predict label *y*?
 - In housing price example: how well can one predict price given a house?
- Estimation / inference problem
 - How well can one estimate the true function?
 - In housing price example: how well can one learn the price generating function?

Two problems of supervised learning

	Classification		Regression
	Binary classification	Multi-class classification	
Feature space	\mathbb{R}^{d}	\mathbb{R}^{d}	\mathbb{R}^{d}
Label space	{-1, 1}	{1, 2, 3,, K}	\mathbb{R}
Performance metric	Classification error (0-1 loss) for test data	Classification error (0-1 loss) for test data	Mean Square Error
Popular surrogate loss (for training)	Logistic loss / exponential loss / square loss	Multiclass logistic loss (Cross-Entropy loss)	Square loss

The objective function for learning linear regression under square loss

•
$$\hat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T} w - y_{i})^{2} = \operatorname{argmin}_{w} ||Xw - y||_{2}^{2}$$

- aka: Ordinary Least Square (OLS)
- In-class exercise: solve this optimization problem

In-class exercise: Derive the SGD algorithm

• Problem:

•
$$\hat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T} w - y_{i})^{2} = \operatorname{argmin}_{w} ||Xw - y||_{2}^{2}$$

- Step 1: Calculate the gradient of the square loss
- Step 2: Write the SGD update rule

Time complexity of direct solver and GD/SGD

- Direct solver
 - $O(nd^2 + d^3)$
- GD:
 - O(ndT)
- SGD:
 - O(dT)
- $T = n_{\text{iterations}}$

Summary: How to solve linear regression?

- Challenge:
 - We don't have access to future data for prediction!
 - We also don't have access to ground truth f_0
- By solving an optimization problem that minimizes the loss function on the training data, and hope that it generalizes.
 - We can verify if it generalizes or not using hold-out / cross-validation ...
- The least square optimization problem using square loss function:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$