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Agenda

* Linear model of housing price prediction
* Why least squares?
* Linear regression problem

* How to solve linear regression?
 Direct solver
e Gradient Descent



Case study: Housing price

* Suppose we would like to build a model predicting house prices.
* The model takes features of a house as inputs, and outputs predicted price.

* Discussion:
 What are the factors (features) of a house that affects its price?

* For example,

- MedInc median income in block group

° . - HouseAge median house age in block group

8 features' -~ AveRooms average number of rooms per household

- AveBedrms average number of bedrooms per household
- Population block group population
- AveOccup average number of household members
- Latitude block group latitude
- Longitude block group longitude

* 1 label: house price



Linear model

* Take input feature vector
* Price(x) = wixy + wWox, + WX + Wux, + -+
* x1: medianincome
* X,: median house age

X3: average number of rooms

x,4: average number of bedrooms

* Label space is the real number space R



Linear model

* |[n vector form:

e Price(x) = xTw

* X = [xq, X5, ..., Xg|: feature vector
* w = [wq{, Wy, ..., Xg|: parameter vector

* Aslong as we find a good w, we have a good linear model.

* Goal: Find a good w.



In a general form

e Xw
e X isan X d matrix.

* nisthe number of houses.
* d is the number of features for describing the house.

e wisad-dimensional vector.

e Discussion: What else do we need to learn w?
* We need prices of these n houses!



In a general form

* Supposeyis an n-dimensional vector describing the house prices.

* Qur goal: Solve Xw = vy

« Xisan X d matrix.
* nisthe number of houses.
* d is the number of features for describing the house.

e wisad-dimensional vector.

e What’s this?



Considering conditions of linear systems

* In real-world applications, there
are many challenges.

* No solution o Dot .
o NOISy data o — Fitted Line
* Overdetermined systems (most

common case) 15 |

* Fitting a hyperplane (a line in 2-d) to too

many data points.
10 ~

* Right figure:

 xis afeature of the house
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Considering conditions of linear systems

* In real-world applications, there are
many challenges.

e No solution
@ Data [ ]
* Noisy data —— Fitted Line

20
* Overdetermined systems (most
common case)

* Fitting a hyperplane (a line in 2-d) to too
many data points.

15 ~

10 ~

* So our goal reduces to find the an
approximate w that best describes 51
the data!

* How? T ; ; ; :



The objective function for learning linear
regression under square loss

. .1 .
* W = argmin,, — n . (x/w—1y)? = argmin,, || Xw — y||5

* aka: Ordinary Least Square (OLS)

* In-class exercise: solve this optimization problem by setting
gradient of the objective function to 0.
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Regression for different problems

* Prediction problem

* How well can one predict label y?
* In housing price example: how well can one predict price given a house?

* Estimation / inference problem

e How well can one estimate the true function?

* Actually the true function may not be a linear function.
* In housing price example: how well can one learn the price generating function?
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Detour: How do we optimize a continuously
differentiable function in general?

* The problem: m@in f(6)

* Discussion: How do you solve this optimization problem?

e Gradient descent in iterations

Ory1 = 0: — 0V f(04)
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In-class exercise: gradient descent

* min f(x) = x?

1. Find x, givenxy = 2,1 = 0.1
2. Findx,givenxy, =2,n =04
3. Findx, givenxy, =4,n =04

4. Find x, givenxy, =2,n =1.5
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Gradient Descent Demo in 2-D

e An excellent demo tool:
* https://github.com/lilipa

ds/gradient_descent_viz

Pause

Restart

Playback speed:

5x

Ecliptic Bowl o

Overview Step-by-Step |

|| Gradient Arrows

|| Adjusted Gradient Arrows
| Momentum Arrows

|| Sum of Gradient Squared
|v| Path

v Gradient Descent

LearningRate: 1e -2 |

Learning Rate: 1e z

Decay rate: +
|| Adagrad

Learning Rate: 1e z

Learning Rate: 1e z

Decay rate: z

Learning Rate: 1e -2 |<
Betat: 0995 C
Beta2: 0999 |2
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https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz

Back to linear regression: How to solve it
using Gradient Descent?

. .1 .
* W = argmin,, — n . (x/w—1y)? = argmin,, || Xw — y||5

* In-class exercise: Write the GD updating rule for solving w.
cwew—2nXT'(Xw —17y)
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Summary

* Least square:

* Heavily used in practice, due to
* Large datasets (many data points)
* Noisy data
* No solution based on conditions of linear systems

* Linear regression
1

¢« W= argmin,, — n L (x/w—v)? = argmin,, || Xw — y||3

* Directsolver: w = (XTX)"1XTy
e GD:w «w —2nXT(Xw —y)
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