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Recap: linear classifier

• Problem of overfitting
• Too dependent on training data
• Bad on test data

• Data splitting methods:
• Holdout
• Cross validation

• Perceptron algorithm
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Today

• Learn how to train a machine learning classifier!

• Surrogate loss

• Continuous optimization

• Gradient Descent (GD)
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Recap: Linear classifier

• Take input feature vector
• Score 𝑥 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4

• 𝑥1 = 1(has hyperlinks)

• 𝑥2 = 1(on contact list)

• 𝑥3 = proportion of misspelling

• 𝑥4 = length

• Let label space be {−1,1}

• Linear classifier:

ℎ𝑤 𝑥 = ቊ
1, if Score(𝑥) ≥ 0

−1, if Score 𝑥 < 0
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Key question: How to train linear classifier
(find 𝑤)?



Discussion:

• 0-1 loss:

• Training problem:

• How can you minimize 0-1 loss?
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0-1 loss is unfortunately very hard to optimize

• 0-1 loss:

• Training problem:

• Given 𝑛 data points, the learner needs to check 2𝑛 different
configurations.
• Why 2? Prediction matches / doesn’t match label 𝑦.
• It is known as NP-hard.
• Highly inefficient when 𝑛 is large.
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Just “relax”: relaxing a hard problem into an 
easier one
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New loss function is called “surrogate loss”
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Key point: Choice of surrogate
loss must satisfy

• Discussion: why?
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Loss functions
• 0-1 loss:

• Surrogate losses:

• Logistic loss:

• Hinge loss:
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(Figure from Section 10.4 of ”Elements of Statistical Learning”)



In-class exercise: Intuition of the logistic loss
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Try plotting the logistic loss as a function of

1. What happens when the classifier predicts correctly?

2. What happens when the classifier predicts incorrectly?



Which surrogate loss is easier to minimize?

• Continuous
• Differentiable

• Except hinge loss, i.e., loss used in “support vector machine (SVM)”

• Convex
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Convex vs Nonconvex optimizationConvex vs. Nonconvex Opt imizat ion

Unique optimum: global/ local. Multiple local optima

In high dimensions possibly

exponential local optima

How to deal with non-convexity?
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* Be careful:  The surrogate loss being convex does not imply all ML problems using surrogate losses are convex. 
Linear classifiers are, but non-linear classifiers are usually not.



How do we optimize a continuously 
differentiable function in general?

• The problem:

• Gradient descent in iterations
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In-class exercise: gradient descent

• min 𝑓(𝑥) = 𝑥2

1. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.1

2. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 0.4

3. Find 𝑥4 given 𝑥0 = 4, 𝜂 = 0.4

4. Find 𝑥4 given 𝑥0 = 2, 𝜂 = 1.5
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Gradient Descent Demo in 2-D

• An excellent demo tool:
• https://github.com/lilipa

ds/gradient_descent_viz
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https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz


What is the “gradient” of a (multivariate
functions) function?
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