

CSI 436/536 (Fall 2024) Machine Learning

Lecture 8: Loss and Gradient Descent

Chong Liu Assistant Professor of Computer Science

Sep 24, 2024

Recap: linear classifier

- Problem of overfitting
 - Too dependent on training data
 - Bad on test data
- Data splitting methods:
 - Holdout
 - Cross validation
- Perceptron algorithm

- Learn how to train a machine learning classifier!
- Surrogate loss
- Continuous optimization
- Gradient Descent (GD)

Recap: Linear classifier

- Take input feature vector
 - Score(x) = $w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$
 - $x_1 = 1$ (has hyperlinks)
 - $x_2 = 1$ (on contact list)
 - x_3 = proportion of misspelling
 - $x_4 = \text{length}$
- Let label space be $\{-1,1\}$
- Linear classifier:

•
$$h_w(x) = \begin{cases} 1, \text{ if Score}(x) \ge 0\\ -1, \text{ if Score}(x) < 0 \end{cases}$$

Key question: How to train linear classifier (find *w*)?

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(h_w(x_i) \neq y_i)$$

Discussion:

• 0-1 loss:

$$\mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i)$$

• Training problem:

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i)$$

• How can you minimize 0-1 loss?

0-1 loss is unfortunately very hard to optimize

• 0-1 loss:

$$\mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i)$$

• Training problem:

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i)$$

- Given n data points, the learner needs to check 2^n different configurations.
 - Why 2? Prediction matches / doesn't match label y.
 - It is known as NP-hard.
 - Highly inefficient when *n* is large.

Just "relax": relaxing a hard problem into an easier one

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i)$$
$$\prod_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(w^T x_i, y_i).$$

New loss function is called "surrogate loss"

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i)$$
$$\prod_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(w^T x_i, y_i).$$

Key point: Choice of surrogate loss must satisfy

 $\mathbf{1}(\operatorname{sign}(w^T x_i) \neq y_i) \leq \ell(w^T x_i, y_i)$

• Discussion: why?

Loss functions

• 0-1 loss:

 $\mathbf{1}(h_w(x) \neq y) = \mathbf{1}(\operatorname{sign}(S_w(x)) \neq y)$

- Surrogate losses:
 - Logistic loss:

 $\log_2(1 + \exp(-y \cdot S_w(x)))$

• Hinge loss:

 $\max(0, 1 - y \cdot S_w(x))$

In-class exercise: Intuition of the logistic loss $\log_2(1 + \exp(-y \cdot S_w(x)))$

Try plotting the logistic loss as a function of $y \cdot S_w(x)$

- 1. What happens when the classifier predicts correctly?
- 2. What happens when the classifier predicts incorrectly?

Which surrogate loss is easier to minimize?

- Continuous
- Differentiable
 - Except hinge loss, i.e., loss used in "support vector machine (SVM)"

у·f

Convex vs Nonconvex optimization

- Unique optimum: global/local.
- Multiple local optima
- In high dimensions possibly exponential local optima

* Be careful: The surrogate loss being convex does not imply all ML problems using surrogate losses are convex. Linear classifiers are, but non-linear classifiers are usually not. How do we optimize a continuously differentiable function in general?

- The problem: $\min_{\theta} f(\theta)$
- Gradient descent in iterations

$$\theta_{t+1} = \theta_t - \eta_t \nabla f(\theta_t)$$

In-class exercise: gradient descent

• min
$$f(x) = x^2$$

- 1. Find x_4 given $x_0 = 2, \eta = 0.1$
- 2. Find x_4 given $x_0 = 2, \eta = 0.4$
- 3. Find x_4 given $x_0 = 4, \eta = 0.4$

4. Find x_4 given $x_0 = 2, \eta = 1.5$

Gradient Descent Demo in 2-D

- An excellent demo tool:
 - <u>https://github.com/lilipa</u> <u>ds/gradient_descent_viz</u>

What is the "gradient" of a (multivariate functions) function?

• We use differentiation to compute derivatives of functions in Calculus.

- Example $f(x,y) = 3x^2 + xy$, $\frac{\partial f(x,y)}{\partial x} = 6x + y$, $\frac{\partial f(x,y)}{\partial y} = x$.
- In many machine learning problems, the objective involves a function that takes a vector of variables as input, e.g., $f(w) = w^T x$ where $w \in \mathbb{R}^d$.
- How to take derivatives on such functions?