

# CSI 401 (Fall 2025) Numerical Methods

Lecture 8: Conditions of Linear Systems

Chong Liu

Department of Computer Science

Sep 29, 2025

#### Announcements

- HW2 due tonight
- Midterm exam next Monday (2<sup>nd</sup> session in class)
  - Covers Lecture 1-7
    - HW1 (L1-3) HW2 (L4-7) and in-class exercise/discussion questions are your best friend!
  - Given individually
  - Given in closed-book
    - No lecture slides, notes, phones, cheatsheets, ...
    - All you need is a pen
      - Calculator is allowed, but you might not need it.
  - Counts 20 points towards your final grade

## Recap: Eigenvalues and eigenvectors

- Definition:
  - For an  $n \times n$  matrix A, an eigenvector v of A is a nonzero vector such that there exists some  $\lambda \in R$  satisfying
  - $Av = \lambda v$ .

• Work with the characteristic equation for the eigenvalues  $\lambda$ :

$$Av = \lambda v \Leftrightarrow Av - \lambda v = 0 \Leftrightarrow Av - \lambda Iv = 0 \Leftrightarrow (A - \lambda I)v = 0.$$

• But v is a nonzero vector, so  $det(A - \lambda I) = 0$ .

# Recap: Power method: Computing the eigenvalue of largest modulus and its corresponding eigenvector

$$|\lambda_1| > |\lambda_2| \geqslant \dots \geqslant |\lambda_n|$$
.

- Works for diagonalizable matrix only. All symmetric matrices are diagonalizable.
- Algorithm:
  - Start with an initial nonzero vector  $w^{(0)}$
  - Run in K iterations

$$w^{(k+1)} = \frac{Aw^{(k)}}{\|Aw^{(k)}\|_2}.$$

- Then your final  $w^{(K)} \approx v_1$
- And  $\lambda_1 = Av_1/v_1$

## Recap: Jacobi method

- After DLU decomposition, we have
  - $\bullet \ (D+L+U)x=b$
- Rearranging gives:
  - Dx = b (L + U)x
- Jacobi iteration updates:
  - $x^{(k+1)} = D^{-1}(b (L+U)x^{(k)}).$
  - Or equivalently:
    - $x^{(k+1)} = D^{-1}b + \underbrace{(-D^{-1}(L+U))}_{=:T_J} x^{(k)}$ .
- So in compact form:
  - $x^{(k+1)} = T_I x^{(k)} + c$ , where  $c = D^{-1}b$ .

## Recap: Gauss-Seidel method

- After DLU decomposition, we have
  - (D + L + U)x = b
- Rearranging gives:
  - $\bullet \ (D+L)x = b Ux$
- Gass-Seidel iteration updates:
  - $(D+L)x^{(k+1)} = b Ux^{(k)}$
  - Formally,  $x^{(k+1)} = T_{GS}x^{(k)} + c_{GS}$ 
    - where  $T_{GS} = -(D+L)^{-1}U$ ,  $c_{GS} = (D+L)^{-1}b$

## Agenda

Matrix rank

Conditions of linear system solutions

Geometric view of conditions

## Matrix rank of A ( $m \times n$ matrix)

- Definition:
  - Maximal number of linearly independent columns or maximal number of linearly independent rows.
- Two examples: Find ranks using Gaussian Elimination.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

• Rank is number of pivots after Gaussian Elimination.

#### In-class exercise

• Find the rank of this matrix.

$$A = egin{bmatrix} 2 & 4 & 1 & 3 \ 1 & 2 & 1 & 1 \ 3 & 6 & 2 & 4 \ 0 & 0 & 1 & 1 \end{bmatrix}.$$

# Properties of matrix rank of A ( $m \times n$ matrix)

- Rank doesn't change after elementary row operations.
- $0 \le rank(A) \le \min\{m, n\}$
- $rank(A) = rank(A^{\mathsf{T}})$

- Full column rank: rank(A) = n
- Full row rank: rank(A) = m
- For square A,  $rank(A) = n \leftrightarrow det(A) \neq 0$

#### Recap: Linear systems

- An example of linear systems
  - Any linear system can always be rewritten in matrix form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- More generally, Ax = b
  - A is an  $m \times n$  matrix
  - x is an n-dimensional vector
  - b is an m-dimensional vector
- Problem: given A and b, how can you solve x?

#### In-class exercise: Gaussian Elimination

Solve the following linear system:

$$egin{cases} x+y+z=1 \ 2x+2y+2z=2 \ x+y+z=3 \end{cases} \iff egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 2 & 2 & 2 \ 1 & 1 & 1 & 3 \end{bmatrix}$$

• Solution:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 3 \end{array}\right] \qquad \left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right]$$

What did you find?

#### In-class exercise: Matrix rank

• Find rank(A) and rank(A|b)

$$egin{cases} x+y+z=1 \ 2x+2y+2z=2 \ x+y+z=3 \end{cases} \iff egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 2 & 2 & 2 \ 1 & 1 & 1 & 3 \end{bmatrix}$$

- Solution:
  - rank(A) = 1, rank(A|b) = 2

## Conditions of no solution to a linear system

• rank(A) < rank(A|b)

• In other words, the system is *inconsistent*.

#### In-class exercise: Gaussian Elimination

Solve the following linear system:

$$egin{cases} x+y+z=1 \ 2x+2y+2z=2 \ x-y+z=0 \end{cases} \iff egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 2 & 2 & 2 \ 1 & -1 & 1 & 0 \end{bmatrix}$$

Solution:

$$\left[ egin{array}{ccc|c} 1 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 \ 1 & -1 & 1 & 0 \end{array} 
ight] \qquad \left[ egin{array}{ccc|c} 1 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 \ 0 & -2 & 0 & -1 \end{array} 
ight] \qquad \left[ egin{array}{ccc|c} 1 & 1 & 1 & 1 \ 0 & -2 & 0 & -1 \ 0 & 0 & 0 & 0 \end{array} 
ight]$$

$$\left[ egin{array}{ccc|c} 1 & 1 & 1 & 1 & 1 \ 0 & -2 & 0 & -1 \ 0 & 0 & 0 & 0 \end{array} 
ight]$$

What did you find?

#### In-class exercise: Matrix rank

• Find rank(A) and rank(A|b)

$$egin{cases} x+y+z=1 \ 2x+2y+2z=2 \ x-y+z=0 \end{cases} \iff egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 2 & 2 & 2 \ 1 & -1 & 1 & 0 \end{bmatrix}$$

- Solution:
  - rank(A) = rank(A|b) = 2

# Conditions of infinitely many solutions to a linear system

- Consistency (at least one solution exists):
  - rank(A) = rank(A|b)
- AND
- Underdetermined (free variables remain):
  - rank(A) < n

# Parametric solution to a system with infinitely many solutions

Solve the following linear system:

$$egin{cases} x+y+z=1 \ 2x+2y+2z=2 \ x-y+z=0 \end{cases} \iff egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 2 & 2 & 2 \ 1 & -1 & 1 & 0 \end{bmatrix}$$

• Parametric solution: x + y = 1 - z, x - y = -z.

$$x=rac{1-2t}{2}, \qquad y=rac{1}{2}, \qquad z=t.$$

$$\left\{\left(rac{1-2t}{2},\;rac{1}{2},\;t
ight):\;t\in\mathbb{R}
ight.
ight\}.$$

# Conditions of one unique solution to a linear system

- Consistency (at least one solution exists):
  - rank(A) = rank(A|b)
- AND
- Full rank (no free variables):
  - rank(A) = n
- When m = n (square matrix)
  - If A is nonsingular  $(\det(A) \neq 0)$ , then  $x = A^{-1}b$  is the unique solution.
  - If det(A) = 0, uniqueness fails (either no solution or infinitely many solutions).

#### In-class exercise: Geometric view

 Draw these two lines in the x-y coordinate space of the following linear system:

$$egin{cases} x+y=2 \ x-y=0 \end{cases}$$

Then draw lines for these two systems:

$$egin{cases} x+y=2 \ 2x+2y=4 \end{cases} \qquad egin{cases} x+y=2 \ x+y=0 \end{cases}$$

What did you find?

# Geometric view of these three systems





#### Geometric view of linear systems

- Each linear equation in the system defines a hyperplane.
  - In 2-d space (only x,y), it's a line.
  - In 3-d space (only x,y,z), it's a plane.
  - In high-d space (x,y,z,...), it's a high-dimensional plane.

## Geometric view of solutions (3-d case)

#### • Discussion:

- Which figure shows a unique solution?
- Which figure shows infinitely many solutions?
- Which figure shows no solution?



# Summary of Conditions for Solutions of a Linear System Ax = b

| Case                      | Rank Condition                                              | Number of Solutions        | Geometric Interpretation                                                  |
|---------------------------|-------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------|
| No Solution               | $\mathrm{rank}(A) < \mathrm{rank}([A \mid \mathbf{b}])$     | None (inconsistent system) | Hyperplanes do not intersect (contradictory equations)                    |
| Unique Solution           | $\mathrm{rank}(A) = \mathrm{rank}([A \mid \mathbf{b}]) = n$ | Exactly <b>one</b>         | Hyperplanes intersect at a single point                                   |
| Infinitely Many Solutions | $\mathrm{rank}(A) = \mathrm{rank}([A \mid \mathbf{b}]) < n$ | Infinitely many            | Hyperplanes intersect along a line, plane, or higher-dimensional subspace |