

CSI 401 (Fall 2025) Numerical Methods

Lecture 6: Eigenvalues & Eigenvectors: Power Method

Chong Liu

Department of Computer Science

Sep 22, 2025

Recap: Linear systems

- An example of linear systems
 - Any linear system can always be rewritten in matrix form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{aligned} \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- More generally, Ax = b
 - A is a $n \times n$ matrix, x, b are n-dimensional vectors.
- Problem: given A and b, how can you solve x?

Recap: Gaussian elimination

- Rewrite the problem in augmented matrix form
 - Original augmented matrix and manipulated augmented matrix

$$\begin{bmatrix} 1 & 1 & 1 & 7 \\ 3 & 2 & 1 & 11 \\ 4 & -2 & 2 & 8 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 7 \\ 0 & -1 & -2 & -10 \\ 0 & 0 & 10 & 40 \end{bmatrix}$$

- Elementary row operations:
 - 2^{nd} line = 2^{nd} line $3 * 1^{st}$ line [0 -1 -2 -10], done!
 - 3^{rd} line = 3^{rd} line $4 * 1^{st}$ line [0 -6 -2 -20]
 - 3^{rd} line = 3^{rd} line $6 * 2^{nd}$ line [0 0 10 40], done!

Recap: Gauss-Jordan Elimination

• Consider this linear system: x-2y+3z=9-x+3y=-42x-5y+5z=17

- Key idea of Gauss-Jordan Elimination:
 - Use elementary row operations to make A become an identity matrix
 - So that you can directly read the results!

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{\begin{array}{c} \textbf{Elementary row} \\ \textbf{operations} \\ \hline \\ \textbf{Gaussian} \\ \textbf{elimination} \end{array}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\begin{array}{c} \textbf{Elementary row} \\ \textbf{operations} \\ \hline \\ \textbf{Gauss-Jordan} \\ \textbf{elimination} \end{array}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Recap: LU decomposition

- $\bullet A = LU$
 - L is a lower triangular matrix, U is a upper triangular matrix
 - Note this decomposition may not be unique
- For example, LU decomposition of A

$$A = egin{bmatrix} 2 & 1 & 1 \ 4 & -6 & 0 \ -2 & 7 & 2 \end{bmatrix} \qquad L = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1 & 1 \end{bmatrix}, \quad U = egin{bmatrix} 2 & 1 & 1 \ 0 & -8 & -2 \ 0 & 0 & 1 \end{bmatrix}.$$

- To solve linear systems:
 - Ax = b becomes LUx = b
 - Solution:
 - Step 1: Solve y from Ly = b
 - Step 2: Solve x from Ux = y

Partial pivoting prevents unstable solutions

- How does partial pivoting work?
 - Swap rows to make pivot have the largest absolute value in its column.

$$\begin{pmatrix} 10^{-20} & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 1 & 2 \\ 10^{-20} & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 10^{-20} R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 - 10^{-20} & 1 - 2 \cdot 10^{-20} \end{pmatrix}$$

$$x_2 = \frac{1 - 2 \cdot 10^{-20}}{1 - 10^{-20}} \approx 1 \pm 10^{-20}$$

$$x_1 + x_2 = 2 \implies x_1 = 1 \pm 10^{-20}.$$

- Why does it work?
 - Avoid dividing by tiny numbers, reduces relative error, and makes LU numerically stable for most matrices.

Agenda

• Eigenvalue and eigenvectors

- Power method
 - Find eigenvalues and eigenvectors

Eigenvalues and eigenvectors

• Definition:

- For an $n \times n$ matrix A, an eigenvector v of A is a nonzero vector such that there exists some $\lambda \in R$ satisfying
- $Av = \lambda v$.

• Discussion:

- What's the dimension of *v*?
- Is Av a matrix or a vector?
- Is λv a vector or a real number?

Applications of Eigenvalues and eigenvectors

- Principal component analysis
 - One of the most widely used dimension-reduction method
 - For
 - Efficient data storage
 - Protein sequence analysis
 - ...

And a lot more!

Goal: Find eigenvectors and eigenvalues of a square matrix \boldsymbol{A}

- Discussion: How to find eigenvalues by hand?
 - Reviewed in Lecture 3.
- Work with the characteristic equation for the eigenvalues λ :

$$Av = \lambda v \Leftrightarrow Av - \lambda v = 0 \Leftrightarrow Av - \lambda Iv = 0 \Leftrightarrow (A - \lambda I)v = 0.$$

• But v is a nonzero vector, so $det(A - \lambda I) = 0$.

Detour: How to understand matrix determinant det(A)?

• Intuitively, the determinant measures the **scaling factor** of the linear transformation defined by the matrix.

For a 2×2 matrix

$$A = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

the determinant is

$$\det(A) = ad - bc$$

- In class exercise:
 - Find det of A, B, C, D, E, F.
 - Discussion: what did you find?

Back to our goal: Find eigenvectors and eigenvalues of a square matrix A

• Find eigenvalues by hand: Work with the characteristic equation for the eigenvalues λ :

$$Av = \lambda v \Leftrightarrow Av - \lambda v = 0 \Leftrightarrow Av - \lambda Iv = 0 \Leftrightarrow (A - \lambda I)v = 0.$$

• But v is a nonzero vector, so $det(A - \lambda I) = 0$.

• In class exercise: Find eigenvalue and eigenvectors.

$$A = egin{bmatrix} 4 & -2 \ 1 & 1 \end{bmatrix}$$

Goal: Find eigenvectors and eigenvalues of a square matrix \boldsymbol{A}

• Work with the characteristic equation for the eigenvalues λ :

$$Av = \lambda v \Leftrightarrow Av - \lambda v = 0 \Leftrightarrow Av - \lambda Iv = 0 \Leftrightarrow (A - \lambda I)v = 0.$$

- For large matrix A, we cannot find it by hand writing
- So we need an efficient algorithm

Discussion: Is this a linear system?

Goal: Find eigenvectors and eigenvalues of a square matrix \boldsymbol{A}

• So we want to solve:

$$(A - \lambda I)v = 0.$$

• If A has n linearly independent eigenvectors v_1, \ldots, v_n , so they collectively form a basis for \mathbb{R}^n , then A is diagonalizable

$$A = VDV^{-1}$$

• V is the matrix whose columns are v_1,\ldots,v_n , and D is a diagonal matrix whose diagonal entries are $\lambda_1,\ldots,\lambda_n$

$$AV = egin{pmatrix} | & & & | \ | & V_1 & \cdots & Av_n \ | & & | \end{pmatrix} = egin{pmatrix} | & & & | \ | & V_1 & \cdots & \lambda_n v_n \ | & & | \end{pmatrix} = VD_1$$

If A has n linearly independent eigenvectors v_1, \ldots, v_n , so they collectively form a basis for R^n , then A is diagonalizable

• Let v_1, \dots, v_n be orthonormal eigenvectors of A. Then any vector x can be written as

$$x = v_1^T x \cdot v_1 + \dots v_n^T x \cdot v_n.$$

- That is: x can be written as a sum of its orthogonal projections onto each of the vectors.
- Then Ax is simply

$$Ax = \lambda_1 v_1^T x \cdot v_1 + \dots \lambda_n v_n^T x \cdot v_n.$$

Power method: Computing the eigenvalue of largest modulus and its corresponding eigenvector

$$|\lambda_1| > |\lambda_2| \geqslant \dots \geqslant |\lambda_n|$$
.

 Works for diagonalizable matrix only. All symmetric matrices are diagonalizable.

• Algorithm:

- Start with an initial nonzero vector $w^{(0)}$
- Run in K iterations

$$w^{(k+1)} = \frac{Aw^{(k)}}{\|Aw^{(k)}\|_2}.$$

- Then your final $w^{(K)} \approx v_1$
- And $\lambda_1 = Av_1/v_1$

Derivation of the Power Method

$$w^{(0)} = c_1 v_1 + c_2 v_2 + \dots + c_n v_n,$$

for coefficients $c_1, ..., c_n$. Then

$$A^{k}w^{(0)} = c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots + c_{n}\lambda_{n}^{k}v_{n}$$
$$= \lambda_{1}^{k} \cdot (c_{1}v_{1} + c_{2}(\lambda_{2}/\lambda_{1})^{k}v_{2} + \dots + c_{n}(\lambda_{n}/\lambda_{1})^{k}v_{n})$$

Note that since $|\lambda_j| < |\lambda_1|$ for all j, we have

$$(\lambda_j/\lambda_1)^k \xrightarrow{k\to\infty} 0.$$

Thus,

$$\frac{1}{\lambda_1^k} A^k w^{(0)} \to c_1 v_1.$$

Appropriate normalization yields v_1 . In particular, it can be shown that

$$\frac{A^k w^{(0)}}{\|A^k w^{(0)}\|_2} = w^{(k+1)}.$$

Power method in MATLAB

```
function [v, lambda] = power_method(A, w, k)
    for j=1:k
        w = A*w / norm(A*w);
    end
    v = w;
    z = A*w;
    lambda = z(1) / v(1);
end
```

• Discussion: stopping criterion is number of iterations. What else can be a stopping criterion?

In-class exercise: 2 iterations of power method

$$A = egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$$

whose eigenvalues are 3 and 1 (dominant =3, eigenvector $[1,1]^T$).

Start
$$x^{(0)} = (1,0)^T$$
.

• Solution:

•
$$Ax^{(0)} = [2; 1], x^{(1)} = \frac{[2; 1]}{\sqrt{5}}, Ax^{(1)} = \frac{[5; 3]}{\sqrt{5}}, x^{(2)} = \frac{[5; 3]}{\sqrt{\frac{34}{5}}}$$

An application of power method

Example 15.6 (A successful application of the power method). Consider the matrix

$$\begin{pmatrix} 1 & 2 & 1 \\ -4 & 7 & 1 \\ -1 & -2 & -1 \end{pmatrix} \tag{15.21}$$

Let us find its dominant eigenvalue and eigenvector using the power method. We will start with the vector

$$w^{(0)} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}. \tag{15.22}$$

We eventually find

$$v_1 \approx w^{(k)} = \begin{pmatrix} 0.348155311911396\\ 0.870388279778489\\ -0.348155311911396 \end{pmatrix}$$
 (15.23)

Let us find the corresponding eigenvalue.

$$z = Av_1 = \begin{pmatrix} 1.740776559556978 \\ 4.351941398892445 \\ -1.740776559556978 \end{pmatrix}$$
 (15.24)

We can compute $z_1/v_{1,1}$, which yields $\lambda_1 = 5$.

Summary

- Power method is to used to calculate eigenvalue and eigenvector of a matrix
 - In an iterative way
 - Stopping criterion: number of iterations, relative error
 - Works for diagonalizable matrices only
 - All symmetric matrices are diagonalizable
 - Only finds the eigenvalue of the largest absolute value and its associated eigenvector
 - HW2 also requires you to find the second largest eigenvalue. How?