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Recap: Linear systems

* An example of linear systems

* Any linear system can always be rewritten in matrix form

aj;X; +a;3X;+a,3X;=Db,

a]l a]Z
4, X, +ayX, +2a,X;=b, Ay Ay
faXi X FH5X, =0 A5 Ay

 More generally, Ax = b
 Aisan X nmatrix, x, b are n-dimensional vectors.
* Problem: given A and b, how can you solve x?
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Recap: Gaussian elimination

* Rewrite the problem in augmented matrix form
* Original augmented matrix and manipulated augmented matrix

—

R 17 o3 1 7"
3 2 1 1| e |0 -1 -2 -10
% =8 8 0 0 10 40

* Elementary row operations:
e 2"dline =2"%1line-3 * 1stline [0 -1 -2 -10], done!
e 39line=3"1line-4*1stline [0 -6 -2 -20]
e 39line=3"1line-6*2"%1line[00 10 40], done!



Recap: Gauss-Jordan Elimination

» Consider this linear system: * —2y+3z2=9
-X + 3y =-4
2X-3y+35z=17

* Key idea of Gauss-Jordan Elimination:

* Use elementary row operations to make A become an identity matrix
* So thatyou can directly read the results!

Elementary row _ - Elementary row _

1 -2 3 B

Operations L =% 3 ()l)erati()ns Ll 00 |
-1 3 0 -4 -> 8 1 3 5 —> (0 1 0 -1
5 B B 11 Gaussian Gauss-Jordan
- - elimination —O _ I 2— elimination _O 0 1 2_



Recap: LU decomposition

cA=LU
* Lis alower triangular matrix, U is a upper triangular matrix
* Note this decomposition may not be unique

* For example, LU decomposition of A

2 1 1 1 0 0
A=|4 -6 0 L=12 1 o,
1

_ —2 7 2
* To solve linear systems:

e Ax = b becomesLUx = b

e Solution:
* Step 1: Solve yfrom Ly = b
* Step 2: Solve x from Ux =y




Partial pivoting prevents unstable solutions

* How does partial pivoting work?
* Swap rows to make pivot have the largest absolute value in its column.

(1020 1 1) Ri¢>Ro ( 11 2) Ro+R2—10-20R; (1 1 ‘ 2 )
1 1| 2 10720 1 | 1 “"\0 1-1072%0 | 1—2.107%

1—2-10"20
1—10-20
T1+To=2 — 27 =1+10"%.

~ 1+ 102

L9 =

* Why does it work?

* Avoid dividing by tiny numbers, reduces relative error, and makes LU
numerically stable for most matrices.



Agenda

* Eigenvalue and eigenvectors

* Power method

* Find eigenvalues and eigenvectors



Eigenvalues and eigenvectors

* Definition:
* Forann X n matrix A, an eigenvector v of A is a nonzero vector such that
there exists some A € R satisfying

e Av = Av.

* Discussion:
* What’s the dimension of v?
* |s Av a matrix or a vector?
* |Is Av avector or a real number?



Applications of Eigenvalues and eigenvectors

* Principal component analysis
* One of the most widely used dimension-reduction method

* For
* Efficient data storage
* Protein sequence analysis

* Quantum computing

* And a lot more!



Goal: Find eigenvectors and eigenvalues of a
square matrix A

* Discussion: How to find eigenvalues by hand?
* Reviewed in Lecture 3.

* Work with the characteristic equation for the eigenvalues A:

Av=w s Av— =08 Av-Alv=0& (A—A)v=0.

* But vis anonzero vector, so det(4 — Al) = 0.
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Detour: How to understand matrix
determinant det(4)?

* Intuitively, the determinant measures the scaling factor of the
linear transformation defined by the matrix.

For a 2x2 matrix
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det(A) = ad — be :\ HTD;N
* In class exercise: R QD Bl o=

* FinddetofA,B,C,D, E, F. = I
* Discussion: what did you find?

LR

39
-

' 9
ageur
'

XLIJRU JIYA 10 PUL *f — 7 SoLIyew Aq pajuasaidal suoryeuiojsuel)
TRQUII SNOLTRA T[JUA PAULIOJSUIeI ST JSLL o) 0) S[qIsIA 90y A[Tus ay (|



Back to our goal: Find eigenvectors and
eigenvalues of a square matrix A

* Find eigenvalues by hand: Work with the characteristic equation
for the eigenvalues A:

Av= &S Av—w=08Av—-ANv=0& (A—-A)v=0.

* But vis anonzero vector, sodet(4 — AI) = 0.

* |In class exercise: Find eigenvalue and eigenvectors.

=i 7
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Goal: Find eigenvectors and eigenvalues of a
square matrix A

* Work with the characteristic equation for the eigenvalues A:

Av= s Av—- =08 Av—-Av=0& (A—-\)v =0.

* For large matrix A, we cannot find it by hand writing
* SO0 we need an efficient algorithm

* Discussion: Is this a linear system?

13



Goal: Find eigenvectors and eigenvalues of a
square matrix A

e SO we want to solve:
(A—Al)v=0.

* If A has n linearly independent eigenvectors vq, ..., Uy, SO they
collectively form a basis for R", then A4 is diagonalizable

A=VDVv~!

* I/ is the matrixwhose columns are vy, ..., v,, and D is a diagonal matrix
whose diagonal entries are A, ..., 4,

AV = (A’Ul A’Un) = (Alful )\nfun) =VD
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If A has n linearly independent eigenvectors
V4, ..., Up, SO they collectively form a basis for R",

then A is diagonalizable

* Letvy, ..., v, be orthonormal eigenvectors of A. Then any vector x

can be written as
T = fvf:r “U1 + fv,?;:r * Un.
* Thatis: x can be written as a sum of its orthogonal projections onto each

of the vectors.

* Then Ax is simply
Axr = Alvfx -v1 + ...)\nvga': - Up.
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Power method: Computing the eigenvalue of
largest modulus and its corresponding eigenvector

A1 > (A2 = ... = |\l

* Works for diagonalizable matrix only. All symmetric matrices are
diagonalizable.

* Algorithm:
e Start with an initial nonzero vector w(®
e Runin K iterations
w1 — Aw'™)

([ Aw®]e]

 Thenyour finalw® = p,
 And Al = Avl/vl
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Derivation of the Power Method

w® = C1V1 + CoUg + ... + CprUy,
for coefficients ¢y, ..., c,. Then

Akqp(0) = cl)\’fful + cz)\gvg + ...+ cn)\,ﬁfun

= AV - (e1v1 + ca(A2/A1)*v2 + .. + en(An/ A1) vn).

Note that since |A;| < |A1] for all j, we have

(\j/A)F 22 0.

Thus,

%Akw(o) — Cc11.
1

Appropriate normalization yields v1. In particular, it can be shown that

_ARO ke
| AFw (]|
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Power method in MATLAB

function [v, lambda] = power_method(A, w, k)
for j=1:k
w = A*xw / norm(A*w) ;
end
V = W;
z = Axwy;
lambda = z(1) / v(1);
end

* Discussion: stopping criterion is number of iterations. What else
can be a stopping criterion?
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In-class exercise: 2 iterations of power
method
2 1
A=

whose eigenvalues are 3 and 1 (dominant = 3, eigenvector |1, l]T).

start (%) = (1,0)7.

e Solution:
« A0 — 7. 21, @ 153 2 _ 5
Ax 12; 1], x NG JAx X
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An application of power method

Example 15.6 (A successful application of the power method). Consider the matrix

1 2 1
-4 7 1 (15.21)
-1 -2 -1

Let us find its dominant eigenvalue and eigenvector using the power method. We will start with the
vector

w® = (15.22)

W DN =

We eventually find

0.348155311911396
vy ~w® = [ 0.870388279778489 (15.23)
—0.348155311911396

Let us find the corresponding eigenvalue.

1.740776559556978
z=Avy = | 4.351941398892445 (15.24)
—1.740776559556978

We can compute z1/v1,1, which yields A1 = 5.
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Summary

* Power method is to used to calculate eigenvalue and eigenvector
of a matrix

* |[n an iterative way
e Stopping criterion: number of iterations, relative error

* Works for diagonalizable matrices only
* All symmetric matrices are diagonalizable

* Only finds the eigenvalue of the largest absolute value and its associated
eigenvector

* HW2 also requires you to find the second largest eigenvalue. How?
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