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Announcement

* Course project list has been released!
* Homework 1 will be released next Tuesday!

* TA will give the tutorial of Python and LaleX next Tuesday.



Recap: calculus and optimization review

* Multi-variate calculus
* Partial derivative and gradient
 Chainrule
* Multiple integrals
* Jacobian matrix and Hessian matrix

* Optimization
* Convex set and convex function
* Optimization problem formulation
* Properties of convex optimization
* Lagrange Multipliers



In-class exercise

* Find maximum and minimum values of the function
e f(x,y,2) = x* + y? + z*
est.g(x,y,z)=x*+y?—z=1



Today’s agenda

* Probability
* Basic concepts
Probability properties
Random variable and distribution
Expectation and variance
Independence
* Bernoulli distribution and Gaussian distribution

e Statistics
e Maximum likelihood estimation



Basic concepts

* Experiment:
* An action or process that leads to one or more possible outcomes.

* OQutcome:
* Asingle possible result of an experiment.

* Sample space:
* The set of all possible outcomes of an experiment.

* Event:
* Asubset of the sample space. It is a collection of outcomes that share a
common property.



Types of events

* Simple event:
* An event that consists of exactly one outcome.

* Compound event:
e An eventthat consists of more than one outcome.

* Mutually exclusive events:
* Events that cannot occur simultaneously.

* Independent events:

e Events where the occurrence of one event does not affect the occurrence of
another.

* Complementary events:
* |f event A occurs, then the complement event A’ does not occur, and vice versa.



Probability properties

* Non-negativity:

* For any event A4, the probability P(4) = 0.
* Normalization:

* The probability of the sample space Sis 1, i.e., P(S) = 1.
* Additivity:

* For any two mutually exclusive events A and B, the probability of their
unionisP(AUB) = P(A) + P(B).



Probability of events
* For a finite sample space with equally likely outcomes,
. P(A) = Number of favorable outcomes
~ Total number of outcomes in sample space

* Example: a fair die with 6 outcomes

* Bayes’ Theorem:

* Find the probability of an event based on prior knowledge of conditions
related to the event:

pP(B|A)p(a
+ P(A|B) = (IL(B))”




In-class exercise: Bayes’ theorem

P(B|A)pP(4)

*P(AIB) ===,

* Suppose you have two coins:
 CoinAis afaircoin (50% heads, 50% tails).

* Coin B is biased, with a 70% chance of landing heads and 30% chance of
landing tails.

* You randomly choose one of the two coins (with equal probability)
and flip it. The result is heads. What is the probability that you
chose the biased coin (Coin B)?



Random variable and distribution

e Arandom variable X is a numerical outcome of a random
experiment

* The distribution of a random variable is the collection of possible
outcomes along with their probabilities:

* Discrete: p(X = x) = p(x)
e Continuous:p(a <X <b) = f;p(x) dx
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Expectation

* Discrete case:
* Forarandom variable X~p(X = x), its expectation is
* E[X] = 2y xp(X = x)
* Inan empirical sample, xq, x5, ... xy, E[X] = %Z’i\’:lxi

e Continuous case:

co

* E[X] = J__ xp(x)dx
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Properties of expectation

* Non-negativity:
* If X > 0,then E[X] = 0.
* Linearity:
« E[X +Y] = E[X] + E[Y]
* ElaX] = aE[X]

* Discussion: expectation of f(x), a function of random variable x?
* Elx] = [ f(X)p(x)dx
* Elx] =X f(x)p(x)
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Variance

 Variance of a random variable X is the expected value of the
squared deviation from the mean:
» Var[X] = E[(X — E[X])?]
Low Variance High Variance
* Mean E[X]
» Deviation X — E[X] °

 Squared deviation (X — E[X])* @ @ °

https://towardsdatascience.com/what-bias-variance-bulls-eye-diagram-really-represent-ff6fb9670993
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In-class exercise

* Use Markov’s inequality to prove Chebyshev’s inequality.
 Markov’s inequality:

» For a nonnegative random variable X and any positive number a,
.« P(X 2 a) <X

a

* Chebyshev’s inequality:
* For a nonnegative random variable X and any positive number a,
. P(|X — E[X]| = a) < 2]

a?
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Joint distribution, conditional distribution and
marginal distribution

* Probability distribution of many (possibly dependent) random
variables.

* Joint: P(X,Y)
* Conditionals: P(X|Y), P(Y|X)

* Marginals: P(X), P(Y)

21



(Statistical) Independence

* Not the same as linearindependence in linear algebra!
« Xand Y are independent, i.e.,
X 1Y iff P(X,Y)=P(X)P(Y) iff P(X) = P(X[|Y)

« Xand Y are independent implies

E[XY] = E[X|E[Y]

ELf(X)g(Y)] = E[f(X)|Elg(Y)]




Bernoulli distribution

Probability Mass Function of a Bernoulli Distribution
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Random Variable X

X ~ Ber(p)
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Gaussian distribution X ~ N (u,0°)
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Statistics in one slide

* What is the difference between probability and statistics?
« Statistics is the “science of data” --- it uses probability theory, but also other
branches of mathematics and computational tools for making sense of data
* Typical problem: Statistical Estimation
* Data: X4,X,,..., X, ~ P
 Goal: estimate a statistical quantity 8 of the distribution P
* Estimator (really an algorithm): 6 that takes input data and output a guess of the
true quantity 0
* Examples
* Estimate the mean, variance, medians (and other quantiles).
* Estimate the expected error of a given ML classifier using a holdout dataset.
* Estimate the parameter 8 of P if P is parameterized by 8, denoted by Py.
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Examples of statistical estimation problem

* Example 1 (Biased coin): Toss a coin 100 times, observe the
outcome “Head” or “Tail”. What is the probability of seeing “Head”?

* Example 2 (Average monthly precipitation in Albany, NY):
* Observe data for Year 1960, 1961,..., 2024.

* Each data pointis a vector of 12 numbers measuring the number of
inches of precipitation.

* How to estimate the average?
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Maximum likelihood estimation

Used since Gauss, Laplace, .... Carefully analyzed by Ronald Fisher.
Key idea:

* Which distribution is more *likely* to have produced the data?
* maxp fpata~p(Data)

 Example: X1, X5, ..., X, ~ Dg
* maXP(Xl,Xz, ,XN|9)

Observation 1: If the dataisi.i.d. then by independence the density factorizes
e P(Xy, Xy, ..., Xyl0) = P(X{|0)P(X,]0)... P(X1]|0)

Observation 2: Taking log does not change the solution.
* max P(Xy, X5, ..., Xy|0) < maxlog P(Xq, X5, ..., Xy |0)
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In-class exercise: Estimating the mean
parameter of a Gaussian distribution

e Data

e Likelihood:

* The MLE problem:

X1,y Xn "5 N (1, 02)

o= (3 (2)

n 2
. 1 _Ximp?
{4 = arg max | | e 20
pnef0,1] paler o\ 2T
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