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Announcement

• Course project list has been released!

• Homework 1 will be released next Tuesday!

• TA will give the tutorial of Python and LaTeX next Tuesday.

1



Recap: calculus and optimization review

• Multi-variate calculus
• Partial derivative and gradient
• Chain rule
• Multiple integrals
• Jacobian matrix and Hessian matrix

• Optimization
• Convex set and convex function
• Optimization problem formulation
• Properties of convex optimization
• Lagrange Multipliers
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In-class exercise

• Find maximum and minimum values of the function
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2

• s.t. 𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧 = 1
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Today’s agenda

• Probability
• Basic concepts
• Probability properties
• Random variable and distribution
• Expectation and variance
• Independence
• Bernoulli distribution and Gaussian distribution

• Statistics
• Maximum likelihood estimation
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Basic concepts

• Experiment:
• An action or process that leads to one or more possible outcomes.

• Outcome:
• A single possible result of an experiment.

• Sample space:
• The set of all possible outcomes of an experiment.

• Event:
• A subset of the sample space. It is a collection of outcomes that share a 

common property.
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Types of events

• Simple event:
• An event that consists of exactly one outcome.

• Compound event:
• An event that consists of more than one outcome.

• Mutually exclusive events:
• Events that cannot occur simultaneously.

• Independent events:
• Events where the occurrence of one event does not affect the occurrence of 

another.

• Complementary events:
• If event 𝐴 occurs, then the complement event 𝐴′ does not occur, and vice versa.
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Probability properties

• Non-negativity:
• For any event 𝐴, the probability 𝑃(𝐴) ≥ 0.

• Normalization:
• The probability of the sample space 𝑆 is 1, i.e., 𝑃(𝑆) = 1.

• Additivity:
• For any two mutually exclusive events 𝐴 and 𝐵, the probability of their 

union is 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).
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Probability of events

• For a finite sample space with equally likely outcomes,
• 𝑃 𝐴 =

Number of favorable outcomes

Total number of outcomes in sample space

• Example: a fair die with 6 outcomes

• Bayes’ Theorem:
• Find the probability of an event based on prior knowledge of conditions 

related to the event:

• 𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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In-class exercise: Bayes’ theorem

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

• Suppose you have two coins:
• Coin A is a fair coin (50% heads, 50% tails).
• Coin B is biased, with a 70% chance of landing heads and 30% chance of 

landing tails.

• You randomly choose one of the two coins (with equal probability) 
and flip it. The result is heads. What is the probability that you 
chose the biased coin (Coin B)?
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Random variable and distribution

• A random variable 𝑋 is a numerical outcome of a random 
experiment

• The distribution of a random variable is the collection of possible 
outcomes along with their probabilities:
• Discrete: 𝑝(𝑋 = 𝑥) = 𝑝(𝑥)

• Continuous: 𝑝(𝑎 ≤ 𝑋 ≤ 𝑏) = ׬
𝑎

𝑏
𝑝(𝑥) d𝑥
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Expectation

• Discrete case:
• For a random variable 𝑋~𝑝(𝑋 = 𝑥), its expectation is
• 𝐸[𝑋] = σ𝑥 𝑥𝑝(𝑋 = 𝑥)

• In an empirical sample, 𝑥1, 𝑥2, … 𝑥𝑁, 𝐸 𝑋 =
1

𝑁
σ𝑖=1

𝑁 𝑥𝑖

• Continuous case:
• 𝐸[𝑋] = ׬

−∞

∞
𝑥𝑝 𝑥 d𝑥
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Properties of expectation

• Non-negativity:
• If 𝑋 ≥ 0, then 𝐸[𝑋] ≥ 0.

• Linearity:
• 𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]

• 𝐸[𝑎𝑋] = 𝑎𝐸[𝑋]

• Discussion: expectation of 𝑓(𝑥), a function of random variable 𝑥?
• 𝐸 𝑥 = ׬ 𝑓 𝑋 𝑝 𝑥 𝑑𝑥

• 𝐸 𝑥 = σ 𝑓 𝑥 𝑝(𝑥)
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Variance

• Variance of a random variable X is the expected value of the 
squared deviation from the mean:
• Var[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2]

• Mean 𝐸[𝑋]

• Deviation 𝑋 − 𝐸[𝑋]

• Squared deviation (𝑋 − 𝐸[𝑋])2
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In-class exercise

• Use Markov’s inequality to prove Chebyshev’s inequality.
• Markov’s inequality:

• For a nonnegative random variable 𝑋 and any positive number 𝑎,

• 𝑃(𝑋 ≥ 𝑎) ≤
𝐸[𝑋]

𝑎

• Chebyshev’s inequality:
• For a nonnegative random variable 𝑋 and any positive number 𝑎,

• 𝑃(|𝑋 − 𝐸 𝑋 | ≥ 𝑎) ≤
Var[𝑋]

𝑎2  
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Joint distribution, conditional distribution and
marginal distribution
• Probability distribution of many (possibly dependent) random

variables.

• Joint: 𝑃(𝑋, 𝑌)

• Conditionals: 𝑃(𝑋|𝑌), 𝑃(𝑌|𝑋)

• Marginals: 𝑃(𝑋), 𝑃(𝑌)
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(Statistical) Independence

• Not the same as linear independence in linear algebra!

• X and Y are independent, i.e.,

• X and Y are independent implies
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Bernoulli distribution
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Gaussian distribution
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Statistics in one slide

• What is the difference between probability and statistics?
• Statistics is the “science of data” --- it uses probability theory, but also other

branches of mathematics and computational tools for making sense of data

• Typical problem: Statistical Estimation
• Data: 𝑋1, 𝑋2, … , 𝑋𝑛 ∼ 𝑃
• Goal: estimate a statistical quantity 𝜃 of the distribution 𝑃
• Estimator (really an algorithm): ෠𝜃 that takes input data and output a guess of the

true quantity 𝜃

• Examples
• Estimate the mean, variance, medians (and other quantiles).
• Estimate the expected error of a given ML classifier using a holdout dataset.
• Estimate the parameter 𝜃 of 𝑃 if 𝑃 is parameterized by 𝜃, denoted by 𝑃𝜃.
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Examples of statistical estimation problem

• Example 1 (Biased coin): Toss a coin 100 times, observe the
outcome “Head” or “Tail”. What is the probability of seeing “Head”?

• Example 2 (Average monthly precipitation in Albany, NY):
• Observe data for Year 1960, 1961,…, 2024.
• Each data point is a vector of 12 numbers measuring the number of

inches of precipitation.
• How to estimate the average?
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Maximum likelihood estimation

• Used since Gauss, Laplace, …. Carefully analyzed by Ronald Fisher.
• Key idea:

• Which distribution is more *likely* to have produced the data?
• max𝑃𝑓Data~𝑃(Data)

• Example: 𝑋1, 𝑋2, … , 𝑋𝑛 ∼ 𝐷𝜃

• max 𝑃(𝑋1, 𝑋2, … , 𝑋𝑁|𝜃)

• Observation 1: If the data is i.i.d. then by independence the density factorizes
• 𝑃 𝑋1, 𝑋2, … , 𝑋𝑁 𝜃 = 𝑃(𝑋1|𝜃)𝑃(𝑋1|𝜃)… 𝑃(𝑋1|𝜃)

• Observation 2: Taking log does not change the solution.
• max 𝑃(𝑋1, 𝑋2, … , 𝑋𝑁|𝜃) max log 𝑃(𝑋1, 𝑋2, … , 𝑋𝑁|𝜃)
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In-class exercise: Estimating the mean
parameter of a Gaussian distribution
• Data

• Likelihood:

• The MLE problem:
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