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Announcement

e Starting from today, you can earn your participation points!
* How?
* |f you answered questions (either correct/incorrect!), showed your
solutions to in-class exercise problems,
* You can come to me to register your name.
* 1 point per lecture

* HW 1 due today

 HW 2 will be released soon



Agenda

* Recap of Lecture 2

* Floating point system
* Truncation and rounding

* Linear system

* Definitions and applications
* Solvers:

e (Gaussian Elimination
e Gauss-Jordan Elimination



Recap: Asymptotic notations

* f(x) = 0(g(x)) asx = x if there is some positive constant C

such that ‘%‘ < C.

* Growth rates in increasing order:
* logn,v/n ,n, nlogn, n3, 2" ,n!



Recap: Decimal expansion

* Take 316.1415 for example:

316.1415=3-10>+1-10'+6-10°+1-107'+4-1072+1-103+5-10"*

* Any real number x can be written as

T =+ i d; - 10/

j=—00




Recap: Scientific notation

Recall how scientific notation works. In decimal, we can write any real number other than 0 as
z = +m x 107, (5.12)

for a unique mantissa m and exponent F, with 1 < m < 10 and E some integer. For example,
consider the number 314.159. In scientific notation, this is written as

3.14159 x 102 (5.13)
In the same fashion, a number can be written in base 2 scientific notation: it takes the form
z = +m x 2F, (5.14)

where this time 1 < m < 2. For instance, consider the number 3.25. We converted this to binary
to get (11.01)2. In scientific notation, this becomes

(1.101)5 x 2% (5.15)

* In-class exercise: scientific notations of 4125, 40.125, 4.125



How data are stored? Floating point system

bs":g” ny—1"np—2- ng—1Yng—2"""

mant pmant mantimant ETP ETP ETP 1 ETD
pmant bty bEP b bSPhS

Here, there is a single bit giving the sign of the number (0 for negative, 1 for positive). Next is
the mantissa, stored as an mps-bit number (usually 52 bits). Finally, the exponent is stored as an
ng-bit number (usually 11 bits). For a nonzero number, the mantissa is not stored directly: since
it is between 1 and 2, the binary expansion always begins with a 1. This is redundant, so we do
not explicitly store it in the floating point representation. It is simply assumed to be there, leading
to the so-called hidden bit representation. The number 0 has a special representation as all Os.

* Discussion: what’s the numberin[0[/0100000...[...0000011]?
e Solution: -(1+0.25)*8=-10.



Example of storing x=3.125 in computers

Example 5.3. Suppose that we want to store the number x = 3.125 in the floating point represen-
tation.

First, we find the binary expansion of x. We do this using the algorithm that we covered last time,
and we get

xz = (11.001)s. (5.16)
We then conwvert it to binary scientific notation, which gives us
z = (1.1001)3 x 2. (5.17)

Thus, the mantissa is m = (1.1001)y, while the exponent is E = (000000001)s. If the number
of mantissa bits ny; = 16 and the number of exponent bits ng = 8, then this would be stored
as| 1 | 1001 0000 0000 0000 | 0000 0001 | Recall that the initial 1 in the mantissa is not explicitly
stored.




Truncation and rounding

1.

Chopping/Truncation: Here, we simply ignore the bits after a certain point. For instance, if
ny = 4, then the mantissa for (0.1)1p after truncation would be 1001. This is equivalent to
rounding toward 0. In other words, the absolute value of the rounded number is less than
or equal to that of the original, but the sign remains the same.

. Rounding up: e.g., (1.0110011),, rounded up after the 4th place, would result in (1.0111),.

In general, the rounded number is greater than or equal to the original (even if the number
is negative). Note that rounding a negative number up is the same as truncating it.

. Rounding down: e.g., (1.0111)2, rounded down after the second decimal place, would result

in (1.010)2. In general,the rounded number is less than or equal to the original. Note that
rounding a positive number down is the same as truncating it.

Rounding to nearest (the default mode in the IEEE standard): e.g., (1.0110 | 11)2 becomes
(1.0111)2, but (1.0110 | 011)2 becomes (1.0110)2. This is because (0.000011)2 is closer to
(0.0001)5 than to 0.0000, but (0.0000011), is closer to 0 than to (0.0001)s.

The algorithm for rounding to the nearest k digits (in binary) after the decimal point is as
follows: on input =z,

(a) If the k + 1st digit after the decimal point is 0, then truncate.
(b) If the k + 1st digit after the decimal point is 1 and z > 0, then round up.
(c) If the k + 1st digit after the decimal point is 1 and z < 0, then round down.

(0.1)10 = (0.0001100110011...)5




Recap: Types of errors

e Discretization error: we can only deal with values of a function at finitely many points. For
example, a very simple way to do numerical differentiation for a function f is to use a finite
difference formula:

Here, the parameter h is some small number. It cannot be 0, so this introduces discretization
error. Recall that the definition of the derivative of a function at a point x is

i { @) = (@)
h—0 h

(2.2)

Later in the course, we’ll considered better methods than this.

e Convergence error: in which we, say, truncate a power series expansion, stop an iterative
algorithm after finitely many iterations, etc.

e Rounding error: This arises because computers have only finite precision. We can only store a
finite amount of data in any given machine. Interestingly, in numerical differentiation, there is
a tradeoff between discretization error and rounding error (since we cannot make A infinitely
small), and this leads to some optimal choice of h! So multiple types of error can play an
important role simultaneously in some problems.



Linear systems (linear equations)

* An example of linear systems

* Any linear system can always be rewritten in matrix form

a, X, +a;,X, +a|3x3:bl djp A A3

a,X; +apX, +ayX;=b, A,y Ay Ay

a3X; +a5,X, +a,3X; =b, a3 Aj

 More generally, Ax = b
e Aisanm X n matrix
* x is an n-dimensional vector
* bis an m-dimensional vector

* Problem: given A and b, how can you solve x?

—
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S0 many applications of linear systems

* Computer graphics & vision:

* Lineartransforms (rotation/scale/shear), camera models, color space conversion

* Machine learning & data science:
* Linearregression, least squares

 Optimization & operations research:
* Network flow, scheduling, logistics

e Economics & finance:
e Supply—-demand equilibrium
* Chemistry & biology:

* metabolic flux analysis solving steady-state linear constraints

 Robotics:
* Jacobian-based small-motion models

 Computer networks:

* Traffic routing and capacity planning via linear flow conservation constraints

Price
(per pound)

$15 4

$10 4

$5 4

Surplus at a
price of $15

~
Shortage at a
price of $5

250 500 750 Quantity
(pounds per month)
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h) The smiley face visible to the right is transformed with various linear
transformations represented by matrices A — F. Find out which matrix
does which transformation:

map each p

ISE

In-class exerc

new location

Recap

1 -1] 12 (10 |
L) 0 1) = 0 -1\
1 1] 10 01
0 -1y 01y t= Lo.\w
A-F image A-F image A-F image




Discussion

x+y+z:7 X+y+ T ]
3x+2y+z=11 -y-2z2=-10
4x -2y +22=38 10z=40

* Which of two systems is easier to be solved?
* How can you solve the easier one?

* Actually, these two are equivalent to each other! How??

14



Gaussian elimination

* Rewrite the problem in augmented matrix form
* Original augmented matrix and manipulated augmented matrix

M 9 1 7 i | 7]
3 2 1 1] ey |0 -1 -2 -10
4 -2 2 8] 0 0 10 40 |

* Elementary row operations:
e 2" line =2"9line-3 * 1stline [0 -1 -2 -10], done!
* 39line=3"line-4* 1% line [0 -6 -2 -20]
* Discussion: how to proceed?
« 39line=3"line-6*2"1line [0 0 10 40], done!



Gaussian elimination

* Rewrite the problem in augmented matrix form
* Original augmented matrix and manipulated augmented matrix

pa—

¥ L i r 1T 1 9

[
3 2 1 1| ey |0 -1 -2 -10
4 —2 2 & 0 0 10 40

L —

— —

* Three elementary row operations:
* Multiply a row by a non-zero constant [Notation: 3R]
* Exchange two rows [Notation: R; 5]
* Add one row with a multiplied row [Notation: Ry + (- 8)Rs]



Gaussian elimination

* Repeat this process in equation form

X+y+z=1] X+y+ z=/
3x+2y+z=11] -y-2z2=-10
4x -2y +272=38 10z=40

* Elementary row operations:
e 2"d [ine =2"9line -3 * 1%t line [-y-2z=-10], done!
e 39line =3"1line-4* 1stline [-6y-2z=-20]
e 39line =3"line-6*2"%line [10z=40], done!
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Gaussian elimination

* Key idea:

* Use elementary row operations to make A become a right-triangular
matrix

* So that you can sequentially solve the linear systems bottom-up!

! ' ! !
dyp dyp = dig |9
F F !

0 ay, -~ ay, | D)

! !



In-class exercise: Gaussian Elimination

* Solve this linear system:

e Solution:

y+3z=4
-Xx+2y=3
2x—-3y+4z=1

- R, [ (DR, >[1 -2 0 -3
-1 2 03 0 1 3 4 0 1 3 4

(2 -3 4 1

% ~8 o 1 2 3 o 1

[: = B =3 . =2 0 -3 1 =2 0 =3
0 1 3 4 0 1 3 4 0 1 3 4
2 -3 4 1 |5R;+(-2R,>|0 1 4 7 |5>R,+(-DR,—>[0 0 1 3

Row3: z=3

Row2: y+3(3)=4, soy=-5

Rowl: x-2(-5)=-3, sox=-13

19



Beyond Gaussian Elimination ...

X—-2y+3z=9
e Consider this linear system: -x+3y =-4
2x-5y+5z=17

* In-class exercise: Write in in Gaussian elimination style.

- Elementary row .

I -2 3 9 operations (1 -2 3 9
-1 3 0 -4 => R 1 35
5 B B 11 (.}al'lssiz?n o 1 2

- - elimination - -

* Discussion: is it possible to further simplify A as an identity matrix?

20



Gauss-Jordan Elimination: Beyond Gaussian
Elimination

» Consider this linear system: * —2y+3z2=9
-X + 3y . |
2X-3y+35z=17

* Yes! It’s Gauss-Jordan Elimination.

* Key idea:
* Use elementary row operations to make A become an identity matrix
* So that you can directly read the results!

- Elementary row _ Elementary row _

l -2 3 9 operations 1 <2 3 operations Lk 1
-1 3 0 -4 => N 1 3 5 —> (0 1 0 -1
5 B B 11 Gaussian Gauss-Jordan
- - elimination —O _ I <4 elimination _O 0 1 2_



In-class exercise: Gauss-Jordan Elimination

* Solve this linear system: 2y 4 4y =-2

X+2y+2z="T
3x-3y-z=11
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