

CSI 401 (Fall 2025) Numerical Methods

Lecture 4: Floating Point & Linear Systems

Chong Liu

Department of Computer Science

Sep 15, 2025

Announcement

- Starting from today, you can earn your participation points!
 - How?
 - If you answered questions (either correct/incorrect!), showed your solutions to in-class exercise problems,
 - You can come to me to register your name.
 - 1 point per lecture
- HW 1 due today
- HW 2 will be released soon

Agenda

- Recap of Lecture 2
- Floating point system
 - Truncation and rounding
- Linear system
 - Definitions and applications
 - Solvers:
 - Gaussian Elimination
 - Gauss-Jordan Elimination

Recap: Asymptotic notations

• f(x) = O(g(x)) as $x \to x_0$ if there is some positive constant C such that $\left|\frac{f(x)}{g(x)}\right| \leqslant C$.

- Growth rates in increasing order:
 - $\log n$, \sqrt{n} , n, $n \log n$, n^3 , 2^n , n!

Recap: Decimal expansion

• Take 316.1415 for example:

$$316.1415 = 3 \cdot 10^2 + 1 \cdot 10^1 + 6 \cdot 10^0 + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3} + 5 \cdot 10^{-4}.$$

Any real number x can be written as

$$x = \pm \sum_{j = -\infty}^{\infty} d_j \cdot 10^j$$

Recap: Scientific notation

Recall how scientific notation works. In decimal, we can write any real number other than 0 as

$$x = \pm m \times 10^E, \tag{5.12}$$

for a unique **mantissa** m and exponent E, with $1 \le m < 10$ and E some integer. For example, consider the number 314.159. In scientific notation, this is written as

$$3.14159 \times 10^2. \tag{5.13}$$

In the same fashion, a number can be written in base 2 scientific notation: it takes the form

$$x = \pm m \times 2^E, \tag{5.14}$$

where this time $1 \le m < 2$. For instance, consider the number 3.25. We converted this to binary to get $(11.01)_2$. In scientific notation, this becomes

$$(1.101)_2 \times 2^1. \tag{5.15}$$

• In-class exercise: scientific notations of 4125, 40.125, 4.125

How data are stored? Floating point system

$$oxed{b_{sign} \mid b_{n_M-1}^{mant} b_{n_M-2}^{mant}...b_1^{mant} b_0^{mant} \mid b_{n_E-1}^{exp} b_{n_E-2}^{exp}...b_1^{exp} b_0^{exp}}$$

Here, there is a single bit giving the sign of the number (0 for negative, 1 for positive). Next is the mantissa, stored as an n_M -bit number (usually 52 bits). Finally, the exponent is stored as an n_E -bit number (usually 11 bits). For a nonzero number, the mantissa is not stored directly: since it is between 1 and 2, the binary expansion always begins with a 1. This is redundant, so we **do** not explicitly store it in the floating point representation. It is simply assumed to be there, leading to the so-called **hidden bit representation**. The number 0 has a special representation as all 0s.

- Discussion: what's the number in [0|0100000...|...0000011]?
- Solution: -(1+0.25)*8=-10.

Example of storing x=3.125 in computers

Example 5.3. Suppose that we want to store the number x = 3.125 in the floating point representation.

First, we find the binary expansion of x. We do this using the algorithm that we covered last time, and we get

$$x = (11.001)_2. (5.16)$$

We then convert it to binary scientific notation, which gives us

$$x = (1.1001)_2 \times 2^1. (5.17)$$

Thus, the mantissa is $m = (1.1001)_2$, while the exponent is $E = (00000001)_2$. If the number of mantissa bits $n_M = 16$ and the number of exponent bits $n_E = 8$, then this would be stored as $1 \ 1001\ 0000\ 0000\ 0000\ 0000\ 0000$ Recall that the initial 1 in the mantissa is not explicitly stored.

Truncation and rounding

- 1. Chopping/Truncation: Here, we simply ignore the bits after a certain point. For instance, if $n_M = 4$, then the mantissa for $(0.1)_{10}$ after truncation would be 1001. This is equivalent to **rounding toward** 0. In other words, the absolute value of the rounded number is less than or equal to that of the original, but the sign remains the same.
- 2. Rounding up: e.g., $(1.0110011)_2$, rounded up after the 4th place, would result in $(1.0111)_2$. In general, the rounded number is greater than or equal to the original (even if the number is negative). Note that rounding a negative number up is the same as truncating it.
- 3. Rounding down: e.g., $(1.0111)_2$, rounded down after the second decimal place, would result in $(1.010)_2$. In general, the rounded number is less than or equal to the original. Note that rounding a positive number down is the same as truncating it.
- 4. Rounding to nearest (the default mode in the IEEE standard): e.g., $(1.0110 \mid 11)_2$ becomes $(1.0111)_2$, but $(1.0110 \mid 011)_2$ becomes $(1.0110)_2$. This is because $(0.000011)_2$ is closer to $(0.0001)_2$ than to $(0.0000)_2$ than to $(0.00001)_2$.

The algorithm for rounding to the nearest k digits (in binary) after the decimal point is as follows: on input x,

- (a) If the k + 1st digit after the decimal point is 0, then truncate.
- (b) If the k + 1st digit after the decimal point is 1 and x > 0, then round up.
- (c) If the k + 1st digit after the decimal point is 1 and x < 0, then round down.

 $(0.1)_{10} = (0.0001100110011...)_2$

Recap: Types of errors

• Discretization error: we can only deal with values of a function at finitely many points. For example, a very simple way to do numerical differentiation for a function f is to use a finite difference formula:

$$\hat{f}(x) = \frac{f(x+h) - f(x)}{h}.$$
 (2.1)

Here, the parameter h is some small number. It cannot be 0, so this introduces discretization error. Recall that the definition of the derivative of a function at a point x is

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$
 (2.2)

Later in the course, we'll considered better methods than this.

- Convergence error: in which we, say, truncate a power series expansion, stop an iterative algorithm after finitely many iterations, etc.
- Rounding error: This arises because computers have only finite precision. We can only store a finite amount of data in any given machine. Interestingly, in numerical differentiation, there is a tradeoff between discretization error and rounding error (since we cannot make h infinitely small), and this leads to some optimal choice of h! So multiple types of error can play an important role simultaneously in some problems.

Linear systems (linear equations)

- An example of linear systems
 - Any linear system can always be rewritten in matrix form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- More generally, Ax = b
 - A is an $m \times n$ matrix
 - x is an n-dimensional vector
 - b is an m-dimensional vector
- Problem: given A and b, how can you solve x?

So many applications of linear systems

Computer graphics & vision:

• Linear transforms (rotation/scale/shear), camera models, color space conversion

Machine learning & data science:

Linear regression, least squares

Optimization & operations research:

• Network flow, scheduling, logistics

Economics & finance:

Supply–demand equilibrium

Chemistry & biology:

metabolic flux analysis solving steady-state linear constraints

Robotics:

Jacobian-based small-motion models

Computer networks:

Traffic routing and capacity planning via linear flow conservation constraints

Recap: In-class exercise: map each pixel to a new location

transformations represented by matrices A - F. Find out which matrix b) The **smiley face** visible to the right is transformed with various linear

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{bmatrix},$$
$$\begin{bmatrix} 1 & -1 \\ 0 & -1 \\ 0 & -1 \end{bmatrix}, E = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ -1 & 0 \end{bmatrix}/2$$

Discussion

$$x + y + z = 7$$
 $x + y + z = 7$
 $3x + 2y + z = 11$ $-y - 2z = -10$
 $4x - 2y + 2z = 8$ $10z = 40$

- Which of two systems is easier to be solved?
- How can you solve the easier one?

• Actually, these two are equivalent to each other! How??

- Rewrite the problem in augmented matrix form
 - Original augmented matrix and manipulated augmented matrix

$$\begin{bmatrix} 1 & 1 & 1 & 7 \\ 3 & 2 & 1 & 11 \\ 4 & -2 & 2 & 8 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 7 \\ 0 & -1 & -2 & -10 \\ 0 & 0 & 10 & 40 \end{bmatrix}$$

- Elementary row operations:
 - 2^{nd} line = 2^{nd} line $3 * 1^{st}$ line [0 -1 -2 -10], done!
 - 3^{rd} line = 3^{rd} line $4 * 1^{st}$ line [0 -6 -2 -20]
 - Discussion: how to proceed?
 - 3^{rd} line = 3^{rd} line $6 * 2^{nd}$ line [0 0 10 40], done!

- Rewrite the problem in augmented matrix form
 - Original augmented matrix and manipulated augmented matrix

$$\begin{bmatrix} 1 & 1 & 1 & 7 \\ 3 & 2 & 1 & 11 \\ 4 & -2 & 2 & 8 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 7 \\ 0 & -1 & -2 & -10 \\ 0 & 0 & 10 & 40 \end{bmatrix}$$

- Three elementary row operations:
 - Multiply a row by a non-zero constant [Notation: $3R_1$]
 - Exchange two rows [Notation: $R_{2,3}$]
 - Add one row with a multiplied row [Notation: $R_1 + (-8)R_3$]

Repeat this process in equation form

$$x + y + z = 7$$
 $x + y + z = 7$
 $3x + 2y + z = 11$ $-y - 2z = -10$
 $4x - 2y + 2z = 8$ $10z = 40$

- Elementary row operations:
 - 2^{nd} line = 2^{nd} line $3 * 1^{st}$ line [-y-2z=-10], done!
 - 3^{rd} line = 3^{rd} line $4 * 1^{st}$ line [-6y-2z=-20]
 - 3rd line = 3rd line 6 * 2nd line [10z=40], done!

- Key idea:
 - Use elementary row operations to make A become a right-triangular matrix
 - So that you can sequentially solve the linear systems bottom-up!

$$\begin{bmatrix} a'_{11} & a'_{12} & \cdots & a'_{1k} & b'_{1} \\ 0 & a'_{22} & \cdots & a'_{2k} & b'_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a'_{kk} & b'_{k} \end{bmatrix}.$$

In-class exercise: Gaussian Elimination

Solve this linear system:

$$y+3z=4$$

$$-x+2y=3$$

$$2x-3y+4z=1$$

• Solution:
$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \rightarrow R_{1,2} \rightarrow \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix} \rightarrow (-1)R_1 \rightarrow \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix} \rightarrow R_3 + (-2)R_1 \rightarrow \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 3 & 4 \\ 0 & 1 & 4 & 7 \end{bmatrix} \rightarrow R_3 + (-1)R_2 \rightarrow \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Row 3: z=3

Row 2: y+3(3)=4, so y=-5

Row 1: x - 2(-5) = -3, so x = -13

Beyond Gaussian Elimination ...

$$x - 2y + 3z = 9$$

• Consider this linear system: -x+3y = -4

$$2x - 5y + 5z = 17$$

• In-class exercise: Write in in Gaussian elimination style.

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{\begin{array}{c} \textbf{Elementary row} \\ \textbf{operations} \\ \hline \\ \textbf{Gaussian} \\ \textbf{elimination} \end{array}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Discussion: is it possible to further simplify A as an identity matrix?

Gauss-Jordan Elimination: Beyond Gaussian Elimination

• Consider this linear system: $\begin{array}{ll} x-2y+3z=9\\ -x+3y&=-4\\ 2x-5y+5z=17 \end{array}$

- Yes! It's Gauss-Jordan Elimination.
 - Key idea:
 - Use elementary row operations to make A become an identity matrix
 - So that you can directly read the results!

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{\begin{array}{c} \textbf{Elementary row} \\ \textbf{operations} \\ \hline \\ \textbf{Gaussian} \\ \textbf{elimination} \end{array}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\begin{array}{c} \textbf{Elementary row} \\ \textbf{operations} \\ \hline \\ \textbf{Gauss-Jordan} \\ \textbf{elimination} \end{array}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

In-class exercise: Gauss-Jordan Elimination

• Solve this linear system: 2x +

$$2x + 4y = -2$$

$$x + 2y + 2z = 7$$

$$3x - 3y - z = 11$$