

CSI 401 (Fall 2025) Numerical Methods

Lecture 3: Review of Linear Algebra

Chong Liu

Department of Computer Science

Sep 8, 2025

Agenda

- Key objects:
 - Vector, matrix
- Operations:
 - Matrix-vector multiplication, matrix-matrix multiplication
- Properties vectors:
 - Norm (one vector), distance and angle (two vectors), linear (in)dependence, orthogonality (a "bag" of vectors)
- Properties of a matrix:
 - Rank, trace, determinant, symmetric, invertible
- Eigenvalues and eigenvectors

Vector and matrix

- Geometric meaning of a vector:
 - An arrow pointing from 0
 - A point in a coordinate system

$$oldsymbol{a} = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$$

- Matrix is a "bag" of vectors.
 - n-column vectors or m-row vectors.

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}.$$

Norms are "metrics". A few useful properties:

Generally, a vector norm is a mapping $\mathbb{R}^n \to \mathbb{R}$, with the properties

- \bullet $||x|| \ge 0$, for all x
- ||x|| = 0, if and only if x = 0
- $\bullet ||\alpha x|| = |\alpha|||x||, \alpha \in \mathbb{R}$
- $\bullet ||x+y|| \le ||x|| + ||y||$, for all x and y

l_p -norm is the most used vector norm

• Definition:

$$\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$$

- Different norms:
 - When p=1, l_1 -norm, Taxicab norm, Manhattan norm $\|m{x}\|_1 := \sum_{i=1}^n |x_i|$
 - When $p=2, l_2$ -norm, Euclidean norm, quadratic norm, square norm
 - In literature, ||x|| usually denotes Euclidean norm

$$\|oldsymbol{x}\|_2 := \sqrt{x_1^2+\cdots+x_n^2}$$

• When $p \to \infty$, l_{∞} -norm

$$\|\mathbf{x}\|_{\infty} := \max_i |x_i|$$

In-class exercise

• Find l_1 -norm, l_2 -norm, l_{∞} -norm of vector x = [1,2,3,4,-5].

• Answer: $15, \sqrt{55}, 5$.

Properties of two vectors

- What can you do with them?
 - Add

•
$$z = x + y$$

•
$$[5,6,-2] = [1,3,5] + [4,3,-7]$$

•
$$g = x - y$$

•
$$[-3,0,12] = [1,3,5] - [4,3,-7]$$

• Weighted combination / linear combination

•
$$h = x + 2y$$

•
$$[9,10,-9] = [1,3,5] + 2 * [4,3,-7]$$

Relationship (similarity) of two vectors

Direction

- Angle
 - Dot product / inner product

•
$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

•
$$\theta = cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|} \right)$$

Three interpretations of matrix-vector Multiplication

- Interpretation 1: "Projecting x to m-directions"
 - Treat matrix A is as a "bag" of row-vectors
 - A is a m by n matrix
 - x is a n-dimensional vector

•
$$Ax = \begin{bmatrix} 6 & 2 & 4 \\ -1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 24 \\ -9 \end{bmatrix}$$

Projecting x from 3 dimensions to 2 dimensions.

Three interpretations of Matrix-Vector Multiplication

- Interpretation 2: "Weighted linear combination of column vectors"
 - Treat matrix A is as a "bag" of column-vectors
 - A is a m by n matrix
 - x is a n-dimensional vector

•
$$Ax = \begin{bmatrix} 6 & 2 & 4 \\ -1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 24 \\ -9 \end{bmatrix}$$

- The weight of column 1 is 4
- The weight of column 2 is -2
- The weight of column 3 is 1

Three interpretations of matrix-vector Multiplication

Scaling transformations

Scaling transformations can also be written as $A = \lambda I_2$ where I_2 is the identity matrix

- Interpretation 3: "A linear transformation of input vector x"
 - Treat matrix A is as an "operator" or a "function that takes a vector input and output another vector" $A:\mathbb{R}^n\to\mathbb{R}^m$

Projection

In-class exercise: map each pixel to a new location

b) The **smiley face** visible to the right is transformed with various linear transformations represented by matrices A – F. Find out which matrix

$$\begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix}, B = \begin{bmatrix}
1 & 2 \\
0 & 1
\end{bmatrix}, C = \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix},$$

$$= \begin{bmatrix}
1 & -1 \\
0 & -1
\end{bmatrix}, E = \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}, F = \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}/2$$

Matrix-Matrix multiplication

• Let $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$. Then, $C = AB = (c_{ij}) \in \mathbb{R}^{m \times n}$ is defined as follows:

$$c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}, ext{ for all } i=1,\cdots,m, j=1,\cdots,n.$$

- Key things to remember
 - Dimension check!
- Properties of a scalar-scalar multiplications (which ones are still valid for matrix-matrix multiplication?)
 - Commutative law: AB=BA?
 - Associative law: (AB)C=A(BC)?
 - Distributive law: A(B+C)=AB+AC?

Examples of matrix-matrix multiplication

Inner product and outer product of two vectors

$$\mathbf{u}\otimes\mathbf{v} = \mathbf{u}\mathbf{v}^\mathsf{T} = egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} egin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = egin{bmatrix} u_1v_1 & u_1v_2 & u_1v_3 \ u_2v_1 & u_2v_2 & u_2v_3 \ u_3v_1 & u_3v_2 & u_3v_3 \ u_4v_1 & u_4v_2 & u_4v_3 \end{bmatrix}$$

- Page rank (mathematics behind Google Search)
 - https://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Neural networks

Properties of a bag of vectors: linear independence

Important to consider for machine learning algorithm design

- Given a set of vectors $\{v_1, v_2, \cdots, v_n\} \in \mathbb{R}^m$, with $m \ge n$, consider the set of **linear combinations** $y = \sum_{j=1}^n \alpha_j v_j$ for arbitrary coefficients α_j 's.
- The vectors $\{v_1, v_2, \cdots, v_n\}$ are linearly independent, if $\sum_{j=1}^n \alpha_j v_j = 0$, if and only if $\alpha_j = 0$ for all $j = 1, \cdots, n$.
- Implication: if a set of vectors are linearly dependent, then one of them can be written as a linear combination of the others

In-class exercise: linear independence

Are these vectors linear dependent?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

Yes, because that $2v_1 + v_2 - v_3 = 0$. Or equivalently, $v_3 = 2v_1 + v_2$.

When they are linearly independent, we call this "bag" of vectors a basis. A basis of size m *spans* an m-dimensional vector space.

• A set of m linearly independent vectors of \mathbb{R}^m is called a **basis** in \mathbb{R}^m : any vector in \mathbb{R}^m can be expressed as a linear combination of the basis vectors.

Properties of basis

- Vectors in a basis are mutually orthogonal
 - Dot product of any two of them is 0.

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Positive (semi)-definite matrix

Very important property for optimization, kernel methods

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite, if and only if $x^T A x \geq 0$, for any $x \in \mathbb{R}^n$.
 - All eigenvalues of A are non-negative.
 - X^TAX for any $X \in \mathbb{R}^{n \times m}$ is positive semi-definite.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite, if and only if $x^T A x > 0$, for any $0 \neq x \in \mathbb{R}^n$.
 - All eigenvalues of A are positive.
 - All diagonal entries of A are positive.

In class exercise: prove $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ is a positive definite matrix

• Solution 1: prove $x^T A x \ge 0$ for any vector x.

- Solution 2: prove all eigenvalues of A are all non-negative.
 - Hint: solve $det(A \lambda I) = 0$ to find eigenvalues.