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Agenda

* Key objects:
e \Vector, matrix

* Operations:
* Matrix-vector multiplication, matrix-matrix multiplication

* Properties vectors:

* Norm (one vector), distance and angle (two vectors), linear
(in)dependence, orthogonality (a “bag” of vectors)

* Properties of a matrix:
* Rank, trace, determinant, symmetric, invertible

* Eigenvalues and eigenvectors



Vector and matrix

* Geometric meaning of a vector: N (a1,2) |
* An arrow pointing from O . a—= 2] eRr?
* Apointin acoordinate system 3
a, ™
* Matrix is a “bag” of vectors.
* n-column vectors or m-row vectors.
[a11 apo leln-
Q21 Q22 - Qap
A= . : .| a; €R.
| Am1 Am2 " Qmp




Norms are “metrics”. A few useful properties:

Generally, a vector norm is a mapping R — R, with the
properties

@ ||z|| >0, forall z

@ ||z||=0,ifandonly ifz =0

® |[az|| = |af|z]], « € R

@ ||z +yl| < ||z|| + ||y, for all z and y




lp-norm is the most used vector norm

* Definition: n L/p
1x]|p = (Z z; Ip)
=1

* Different norms: .
* Whenp = 1, [;-norm, Taxicab norm, Manhattan norm l[z[[1 := pNES
1=1

* Whenp = 2, [,-norm, Euclidean norm, quadratic horm, square norm
* In literature, ||x|| usually denotes Euclidean norm

|2 = /2 + - + 2

* Whenp — o, [-norm
oo += max ]



In-class exercise

* Find [;-norm, l,-norm, l-norm of vector x = [1,2,3,4, —5].

« Answer: 15,55, 5.



Properties of two vectors

* What can you do with them?

* Add
cz=x+1+Yy
« [5,6,—2] =[1,3,5] + [4,3,—7]

* Subtract
*g=x-y
- [-3,0,12] = [1,3,5] — [4,3, 7]

* Weighted combination / linear combination
* h=x+2y
* [9,10,—-9] = [1,3,5] + 2 * [4,3, —7]



Relationship (similarity) of two vectors

* Direction * Angle

* Dot product/inner product
« (x,y) =x"y =¥ x5y

¢ 0 = cos‘l( x.7) )

/\\y:"\\/ iyl

Two vectors are orthogonal (perpendicular to each other) iff their dot-product is 0.



Three interpretations of matrix-vector
Multiplication

* Interpretation 1: “Projecting x to m-directions”
* Treat matrix Ais as a “bag” of row-vectors

 Aisam byn matrix
e x iIs an-dimensional vector

=[S 2 ]2

* Projecting x from 3 dimensions to 2 dimensions.



Three interpretations of Matrix-Vector
Multiplication

* Interpretation 2: “Weighted linear combination of column vectors”
* Treat matrix Ais as a “bag” of column-vectors

 Aisam byn matrix
e x iIs an-dimensional vector

=[S 2 ]2

* The weight of column 1is4
* The weight of column 2is -2
* The weight of column 3is 1
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input vector x”
that takes a vector
R"™ — R™

lon of
ion
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“operator” or a “funct
A
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“Al
IS as an
t and output another vector”

inpu

* Interpretation 3
* Treat matrix A

Three interpretations of matrix-vector

Multiplication
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Projection

RS S

4 5 projection onto a line containing unit vector @ is T(%) = (7 - @)d with matrix A =
Uy Uty
U Uy  Ugly
Projections are also important in statistics. Projections are not invertible except if we project
onto the entire space. Projections also have the property that P> = P. If we do it twice, it
is the same transformation. If we combine a projection with a dilation, we get a rotation
dilation.

Rotation

A =
A |oH |oH klvklv oﬁpv —sin(a)
5 sin(a)  cos(a)

Any rotation has the form of the matrix to the right.
Rotations are examples of orthogonal transformations. If we combine a rotation with a dilation,

She
aar transformations

TR

ngeneral, shears ave transformation in the plane with the property that there s a vector 1 such
hat ﬁ@ = and T(7) - #is a multiple of & for all 7. Shear transformations are fnvertible
ind are important in general because they are examples which can not be diagonalized.

Scaling transformations

K [0 12 0
2 01 *‘ =1 1/

(

S

"

i L . -
Jne f also look at transformations which scale ¢ differently then y and where A s a diagonal
natrix. Scaling transformations can also be written as A = Ay where Iy Is the identity matrix.



10N

b) The smiley face visible to the right is transformed with various linear
transformations represented by matrices A — F. Find out which matrix
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does which transformation;

| to a new locat

| -1] 12 1 0]
Sl E ) Eia
I -1] -1 0 01
O =l B o] B )
= A-F image A-F image A-F image

map each p

ISE

In-class exerc




Matrix-Matrix multiplication

@ Let A € R™*P and B € RP*™, Then,
C = AB = (¢;;) € R™*" is defined as follows:

p

Cij :Zaikbkja foralli=1,--- ,m,5=1,--- ,n.

k=1

* Key things to remember
* Dimension check!

* Properties of a scalar-scalar multiplications
are still valid for matrix-matrix multiplication
* Commutative law: AB=BA?
* Associative law: (AB)C=A(BC)?
* Distributive law: A(B+C)=AB+AC?

%VhiCh ones
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Examples of matrix-matrix multiplication

* Inner product and outer product of two vectors

Uy U1V UIV2  UIV3
T U2 UaV1 UV2 UV3
uv=uv = (v ve w3 =

us U3v1 U3V2 UIV3

Uy U4V1  U4V2  U4V3

* Page rank (mathematics behind Google Search)
* https://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Input layer Output layer

A simple neural network

* Neural networks
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Properties of a bag of vectors: linear
Independence

Important to consider for machine learning algorithm design

@ Given a set of vectors {v1,vo,--- ,v,} € R™, with m > n,
consider the set of linear combinations y = > °>_; a;v; for
arbitrary coefficients «;’s.

@ The vectors {v;,v9,--- ,v,} are linearly independent, if
> i—1oyv; =0, ifandonlyif o; =0forall j=1,--- ,n.

@ Implication: if a set of vectors are linearly dependent, then
one of them can be written as a linear combination of the
others
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In-class exercise: linear independence

Are these vectors linear dependent?

()6

Yes, because that 2v; + v9 — v3 = 0. Or equivalently,
vy = 2v1 + v9.
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When they are linearly independent, we call this
“bag” of vectors a basis. A basis of size m spans
an m-dimensional vector space.

@ A set of m linearly independent vectors of R™ is called a
basis in R™: any vector in R™ can be expressed as a
linear combination of the basis vectors.

\‘
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Properties of basis

* Vectors in a basis are mutually orthogonal

* Dot product of any two of them is O.

A<

g1 =

g3 =
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Positive (semi)-definite matrix

Very important property for optimization, kernel methods

@ A symmetric matrix A € R™*" is positive semi-definite, if
and only if I’ Az > 0, for any = € R".
e All eigenvalues of A are non-negative.
@ XTAX forany X € R™*™ is positive semi-definite.

@ A symmetric matrix A € R™*™ is positive definite, if and
only if zT' Az > 0, for any 0 # z € R™.
e All eigenvalues of A are positive.
e All diagonal entries of A are positive.
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—1

2]isa

. 2
In class exercise: prove A = [ ,
positive definite matrix

* Solution 1: prove xT Ax > 0 for any vector x.

* Solution 2: prove all eigenvalues of A are all non-negative.

« Hint: solve det(4 — AI) = 0 to find eigenvalues.
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