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Announcement

• Course project list will be released later today on Gradescope!
• Enroll in Gradescope ASAP if you haven’t done yet
• Your group chooses to work on one of them, or
• Your group chooses to work a project beyond this list

• You need my approval
• You may come to my office hour to discuss it

• Participation points are given starting today!
• Come to me to claim 1 point after this lecture, if

• You asked a question, or
• You showed/explained your solutions to in-class exercise problems
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Recap: linear algebra review

• Vector:
• Norm (one vector):

• 𝑙𝑝 norm (𝑙1, 𝑙2,𝑙∞)
• Distance and angle (two vectors)
• Linear (in)dependence
• Orthogonality: 𝑥T𝑦 = 0

• Matrix:
• Matrix-vector multiplication, matrix-matrix multiplication
• Rank, trace, determinant, symmetric, invertible
• Eigenvalues and eigenvectors
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Recap: positive (semi)-definite matrix
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In class exercise: prove A =
2 −1

−1 2
is a

positive definite matrix

• Solution 1: prove 𝑥𝑇𝐴𝑥 ≥ 0 for any vector 𝑥.

• Solution 2: prove all eigenvalues of A are all non-negative.
• Hint: solve det 𝐴 − 𝜆𝐼 = 0 to find eigenvalues.
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Today’s agenda

• Multi-variate calculus
• Partial derivative and gradient
• Chain rule
• Multiple integrals
• Jacobian matrix and Hessian matrix

• Optimization
• Convex set and convex function
• Optimization problem formulation
• Properties of convex optimization
• Lagrange Multipliers
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Multi-variate function

• Definition:
• A function of two or more variables takes multiple inputs and produces a 

single output.
• Examples: 𝑓 𝑥, 𝑦 = 𝑒𝑥+𝑦 + 𝑒3𝑥𝑦 + 𝑒𝑦4

• Domain:
• Set of all possible inputs

• Range:
• Set of possible output values.
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Partial derivative

• Definition:
• The rate of change of a function with respect to one variable, holding 

other variables constant.

• Notations:
•

𝜕𝑓

𝜕𝑥
or ∇𝑥𝑓(𝑥, 𝑦)

• Example:
• 𝑓 𝑥, 𝑦 = 𝑒𝑥+𝑦 + 𝑒3𝑥𝑦 + 𝑒𝑦4

•
𝜕𝑓

𝜕𝑥
= 𝑒𝑥+𝑦 + 3𝑦𝑒3𝑥𝑦

•
𝜕𝑓

𝜕𝑦
= 𝑒𝑥+𝑦 + 3𝑥𝑒3𝑥𝑦 + 4𝑦3𝑒𝑦4
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Gradient

• Definition:
• A vector that points in the direction of the 

steepest change. It is composed of the partial 
derivatives of the function with respect to each 
variable:

• Example of 𝑓(𝑥, 𝑦):
• ∇𝑓(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦

• Interpretation:
• It indicates the direction and rate of fastest 

change of the function.
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Chain rule

• To compute derivative of a composite function
• Example:

• 𝑧 = 𝑓 𝑔 𝑡

•
d𝑧

d𝑡
=

d𝑓

𝑑𝑔

d𝑔

d𝑡

• In-class exercise:
• 𝑓(𝑥) = 𝑒2𝑥, 𝑔 𝑥 = sin(𝑥). Find ∇𝑓(𝑔(𝑥)).

•
d𝑓

𝑑𝑔
= 2𝑒2𝑔(𝑥) = 2𝑒2sin(𝑥)

•
d𝑧

d𝑡
=

d𝑓

𝑑𝑔

d𝑔

d𝑡
= 2𝑒2sin(𝑥)cos(𝑥)
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Multiple Integrals

• Double integral: compute the volume under a surface in two 
dimensions.

• Example: a function 𝑓(𝑥, 𝑦) over a region 𝑅
• ∬

𝑅
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

• In-class exercise: find double integral of the function 𝑓(𝑥, 𝑦) =
𝑥2 + 𝑦2 over 0 ≤ 𝑥 ≤ 2 and 1 ≤ 𝑦 ≤ 3.
• 

0

2
𝑥2 𝑑𝑥 = 8/3

• 
0

2
𝑦2 𝑑𝑥 = 2𝑦2

• 
1

3 8

3
+ 2𝑦2 𝑑𝑦 = 16/3 + 52/3 =  68/3
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Jacobian matrix – first order

• In-class exercise:
• 𝑓(𝑥, 𝑦) = (𝑓1, 𝑓2, 𝑓3)

• 𝑓1 = 𝑥2𝑦, 𝑓2 =  𝑦3, 𝑓3 = 4𝑥𝑦 + 5

𝐽3𝑥2 =

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦
𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦
𝜕𝑓3

𝜕𝑥

𝜕𝑓3

𝜕𝑦

=

2𝑥𝑦 𝑥2

0 3𝑦2

4𝑦 4𝑥
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Hessian matrix – second order

• Quadratic approximation of a function
• 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑦𝑇∇𝑓(𝑥)  +  ½𝑦𝑇∇2𝑓 𝑥 𝑦
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Hessian matrix – second order

• Hessian matrix is symmetric

• Hessian matrix and local curvature of the function
• Minimum: Hessian is positive definite
• Maximum: Hessian is negative definite
• Saddle point: Hessian is indefinite (not positive/negative definite)
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Quadratic Function

• 𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐

• Gradient: ∇𝑓 𝑥 = 𝐴𝑥 + b

• Hessian: ∇2𝑓 𝑥 = 𝐴

• Quadratic programming:

• 𝑚𝑖𝑛 𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐

• Key: check Hessian matrix!
• Hessian is positive (semi)definite: minimum (local or global)

• Hessian is negative (semi)definite: maximum (local or global)

• Hessian is indefinite: undetermined, changing curvature

• Semi-definiteness determines uniqueness of solution
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Today’s agenda

• Multi-variate calculus
• Partial derivative and gradient
• Chain rule
• Multiple integrals
• Jacobian matrix and Hessian matrix

• Optimization
• Convex set and convex function
• Optimization problem formulation
• Properties of convex optimization
• Lagrange Multipliers
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Convex Sets

• Definition:
• A set 𝐶 ⊆ 𝑅𝑛  is convex if for any two points 𝑥1, 𝑥2 ∈ 𝐶,𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈

𝐶 for all 𝜃 ∈ [0,1].

• Interpretation:
• A set 𝐶 ⊆ 𝑅𝑛 is convex if, for any two points 𝑥1, 𝑥2 ∈ 𝐶, the line segment 

connecting them is also entirely within 𝐶.

• Discussion: are they convex sets?
• (1) [0,1]
• (2-3)
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Convex functions

• Definition:
• A function 𝑓: 𝐶 → 𝑅 is convex if C is a convex 

set and for all 𝑥1 , 𝑥2 ∈ 𝐶 and 𝜃 ∈ [0,1]: 
• 𝑓 𝜃𝑥1 + 1 − 𝜃 𝑥2 ≤ 𝜃𝑓 𝑥1 + 1 − 𝜃 𝑓(𝑥2)

• Interpretation:
• A convex function lies below the line segment 

connecting any two points on its graph.
• Discussion: propose some convex

functions
• Example: linear functions, quadratic 

functions, exponential functions.
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Convex optimization problem formulation

• min 𝑓 𝑥 ,

• s. t. g 𝑥 ≤ 0, ℎ 𝑥 = 0.

• 𝑓(𝑥) is the convex objective function
• 𝑔(𝑥) is convex inequality constraint
• h(x) is equality constraint
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Review of 1-dimensional optimization

• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 24𝑥 + 2

• First, solve 𝑓’ 𝑥 =  0 to get all solutions 𝑓’(𝑥)  =  3𝑥2 + 6𝑥 − 24 = 0, 𝑥1 =
− 4, 𝑥2 = 2.

• Second, for each solution, check 𝑓”(𝑥):  𝑓”(𝑥)  =  6𝑥 + 6
• 𝑓’’(𝑥)  >  0: minimum (local or global) 𝑥 =  2

• 𝑓’’(𝑥)  <  0: maximum (local or global) 𝑥 =  −4

• 𝑓’’(𝑥)  =  0: undetermined, changing curvature
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Hessian matrix and convex function

• ∇2𝑓 𝑥 ≽ 0, then f(x) is convex
• No local minimum

• ∇2𝑓 𝑥 ≻ 0, then f(x) is strongly convex
• Unique global minimum

• −∇2𝑓 𝑥 ≽ 0, then f(x) is concave
• No local maximum

• −∇2𝑓 𝑥 ≻ 0, then f(x) is strongly concave
• Unique global maximum
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Properties of convex optimization problems

• Global Optimum: A convex optimization problem has no local 
minima other than the global minimum. If a solution is found, it is 
guaranteed to be optimal.

• Duality: Convex optimization problems have associated dual 
problems that provide bounds on the solution. The Lagrange dual 
function plays a crucial role in this.

• Strong Duality: In many convex problems (e.g., if the Slater’s 
condition holds), the optimal value of the primal problem equals 
the optimal value of the dual problem.
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Lagrange multipliers to handle constraints

• The Lagrangian function combines the objective function with the 
constraints using multipliers.

• Example: max 𝑥𝑦, s. t. 𝑥 + 𝑦 = 𝑐
• Solution 1: use 𝑦 = 𝑐 − 𝑥, then objective problem is max 𝑥(𝑐 − 𝑥), so 𝑥 =

𝑦 = 𝑐/2 is the optimal solution.
• Solution 2 (Lagrange multiplier):

• 𝐿(𝑥, 𝑦, 𝜆) = 𝑥𝑦 − 𝜆(𝑥 + 𝑦 − 𝑐)

• Differentiate with regards to 𝑥 and 𝑦, we have 𝑥 = 𝑦 = 𝜆

• Note 𝑥𝑦 is neither convex or concave, so only with constraint it has a 
solution
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Equality constrained problem

• min 𝑓 𝑥, 𝑦 = 𝑥2 + 2𝑦2 − 2

• s.t. 𝑥 + 𝑦 = 1
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Equality constrained problem

• min 𝑓 𝑥, 𝑦 = 𝑥2 + 2𝑦2 − 2

• s.t. 𝑥 + 𝑦 = 1

• Solution:

24



Equality constrained problem in matrix

• 𝑚𝑖𝑛𝑥 𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐, 𝑠. 𝑡. 𝐷𝑥 = 𝑒
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Previous example 
Rewrite the problem: Let

Solution given by

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = 𝑥1
2 + 2𝑥2

2 − 2, 𝑠. 𝑡.  𝑥 + 𝑦 = 1

𝑓 = 𝑥1, 𝑥2
1 0
0 2

𝑥1

𝑥2
+

0
0

𝑥1

𝑥2
− 2

𝑠𝑜, 𝐴 =
2 0
0 4

, 𝑏 =
0
0

, 𝑐=−2

That is, 

1,1
𝑥1

𝑥2
= 𝑒 = 1

𝑠𝑜, 𝐷 = 1,1 , 𝑒 = 1

𝑥1 = 𝑥, 𝑥2 = 𝑦

26


	Slide 0: CSI 436/536 (Fall 2024) Machine Learning Lecture 3: Review of Calculus and Optimization
	Slide 1: Announcement
	Slide 2: Recap: linear algebra review
	Slide 3: Recap: positive (semi)-definite matrix
	Slide 4: In class exercise: prove A 2 2 2 1 1 , 2  is a positive definite matrix
	Slide 5: Today’s agenda
	Slide 6: Multi-variate function
	Slide 7: Partial derivative
	Slide 8: Gradient
	Slide 9: Chain rule
	Slide 10: Multiple Integrals
	Slide 11: Jacobian matrix – first order
	Slide 12: Hessian matrix – second order
	Slide 13: Hessian matrix – second order
	Slide 14: Quadratic Function
	Slide 15: Today’s agenda
	Slide 16: Convex Sets
	Slide 17: Convex functions
	Slide 18: Convex optimization problem formulation
	Slide 19: Review of 1-dimensional optimization
	Slide 20: Hessian matrix and convex function
	Slide 21: Properties of convex optimization problems
	Slide 22: Lagrange multipliers to handle constraints
	Slide 23: Equality constrained problem
	Slide 24: Equality constrained problem
	Slide 25: Equality constrained problem in matrix
	Slide 26:   Previous example 

