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Announcement

* Course project list will be released later today on Gradescope!
* Enrollin Gradescope ASAP if you haven’t done yet
* Your group chooses to work on one of them, or

* Your group chooses to work a project beyond this list
* You need my approval
* You may come to my office hour to discuss it

* Participation points are given starting today!

* Come to me to claim 1 point after this lecture, if
* You asked a question, or
* You showed/explained your solutions to in-class exercise problems



Recap: linear algebra review

* Vector:
* Norm (one vector):
* L, norm (ly, 13,le)
* Distance and angle (two vectors)
* Linear (in)dependence
* Orthogonality: xTy = 0

e Matrix:

* Matrix-vector multiplication, matrix-matrix multiplication
* Rank, trace, determinant, symmetric, invertible
* Eigenvalues and eigenvectors



Recap: positive (semi)-definite matrix

Very important property for optimization, kernel methods

@ A symmetric matrix A € R™*" is positive semi-definite, if
and only if I’ Az > 0, for any = € R".
e All eigenvalues of A are non-negative.
@ XTAX forany X € R™*™ is positive semi-definite.

@ A symmetric matrix A € R™*™ is positive definite, if and
only if zT' Az > 0, for any 0 # z € R™.
e All eigenvalues of A are positive.
e All diagonal entries of A are positive.
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In class exercise: prove A = [ ,
positive definite matrix

* Solution 1: prove xT Ax > 0 for any vector x.

* Solution 2: prove all eigenvalues of A are all non-negative.
* Hint: solve det(4 — AI) = 0 to find eigenvalues.



Today’s agenda

* Multi-variate calculus
* Partial derivative and gradient
 Chainrule
* Multiple integrals
* Jacobian matrix and Hessian matrix

* Optimization
* Convex set and convex function
* Optimization problem formulation
* Properties of convex optimization
* Lagrange Multipliers



Multi-variate function

* Definition:
* Afunction of two or more variables takes multiple inputs and produces a
single output.

« Examples: f(x,y) = e*tY 4 3% 4 ¥*

* Domain:
e Set of all possible inputs
* Range:
* Set of possible output values.



Partial derivative

* Definition:
* The rate of change of a function with respect to one variable, holding
other variables constant.

e Notations:
° a—f V
L orv,f(x,y)

* Example:

4
o flx,y) =e*™V + 3 +e¥
e U _ x+y 3xy
- = ¢ + 3ye

. g—; = eX*Y 4 3xe3%Y 4 4y3eY*



Gradient

* Definition:
* Avectorthat pointsin the direction of the

N

steepest change. It is composed of the partial !
derivatives of the function with respect to each ==flab)

Oa]ime
variable: \ \?“’z:"f
* Example of f(x,y): R e
F V) = (55) /\/

ox’ oy (’

Direction of
steepest ascent

* Interpretation:

e |tindicates the direction and rate of fastest
change of the function.



Chain rule

* To compute derivative of a composite function
* Example:

» z=f(g(®)
. dz _dfdg
dt dg dt

* |[n-class exercise:

e f(x) =e**, g(x) =sin(x). Find Vf(g(x)).
e Y _ 9020(x) = pp2sin(@)
ag

dz _ df dg 2sin(x)
. — — = 2e cos(x
dt dg dt ( )



Multiple Integrals

* Double integral: compute the volume under a surface in two
dimensions.

* Example: a function f(x,y) over aregion R

* [Jpf (e, y)dxdy
* In-class exercise: find double integral of the function f(x,y) =
x“+vy?over0<x<2andl1<y<3.

. foz x%dx =8/3
« [y dx = 2y?
+ [2(2+2y?)dy = 16/3 +52/3 = 68/3
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Jacobian matrix — first order

o of of
L O J— | ..
JZJ Oz [ 0z ox,,

* In-class exercise:

*fy)=Uufafs)

* f1=x%y,f,= Yy’ f3=4xy+5
dx Jdy
| ok
3x2 — Ox ay
o of
| dx 0Jy.
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Hessian matrix — second order

- O*f & f
83’:% 6$1 8.132
D)
Hy)y = o] I
’ Bazz a:r:j
& f & f
| 0z, O0x1 Oz, Oxo

* Quadratic approximation of a function
c fle+y) =f) +y'Vf(x) + Yy ' Vif(x)y




Hessian matrix — second order

* Hesslan matrix iIs symmetric
* Hessian matrix and local curvature of the function
* Minimum: Hessian is positive definite
* Maximum: Hessian is negative definite
* Saddle point: Hessian is indefinite (not positive/negative definite)

- 1 2 ) 2 2
r by - £ i

(definite) (semidefinite) (indefinite)
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Quadratic Function

e f(x) = %xTAx + bTx +c
e Gradient: Vf(x) = Ax +b
* Hessian: V4f(x) = A
* Quadratic programming:
* min f(x) = %xTAx +bTx +c

e Key: check Hessian matrix!
* Hessian is positive (semi)definite: minimum (local or global)

* Hessian is negative (semi)definite: maximum (local or global)
* Hessian is indefinite: undetermined, changing curvature

* Semi-definiteness determines uniqueness of solution
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Today’s agenda

* Optimization
* Convex set and convex function
* Optimization problem formulation
* Properties of convex optimization
* Lagrange Multipliers
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Convex Sets

* Definition:
 Aset C € R" is convex if for any two points x4, x, € C,0x; + (1 — 0)x, €
C forall8 € [0,1].
* Interpretation:
 Aset C € R"is convex if, for any two points x4, x, € C, the line segment
connecting them is also entirely within C.

* Discussion: are they convex sets?

* (1)[0,1]
* (2-3)

L Yy
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Convex functions

* Definition:
* Afunction f: C — R is convexif Cis a convex
setandforallx; ,x, € Cand @ € [0,1]:

+ f(6x; + (1= 0)xp) < Of (1) + (1 - O)f (x2)
* Interpretation:

* A convex function lies below the line segment
connecting any two points on its graph.

* Discussion: propose some convex
functions

* Example: linear functions, quadratic
functions, exponential functions.

0f(z1) + (1 —0)f(x2)
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Convex optimization problem formulation

* min f(x),
es.t.g(x) <0,h(x) =0.

* f(x) is the convex objective function
* g(x) is convex inequality constraint
* h(x) is equality constraint
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Review of 1-dimensional optimization
* f(x) =x3 +3x% —24x + 2

* First, solve f’(x) = 0togetallsolutions f’(x) = 3x?+6x—24=0,x; =
—4,x, = 2.
* Second, for each solution, check f”(x): f"(x) = 6x+ 6
* f”(x) > 0:minimum (local or global) x = 2
* f”(x) < 0:maximum (local orglobal) x = —4
* f”(x) = 0:undetermined, changing curvature
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Hessian matrix and convex function

e VZf(x) = 0, then f(x) is convex (}j/_ T
* No local minimum

* V4f(x) > 0, then f(x) is strongly convex
* Unique global minimum

« —V4f(x) = 0, then f(x) is concave
* No local maximum

« —V%f(x) > 0, then f(x) is strongly concave
* Unique global maximum
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Properties of convex optimization problems

* Global Optimum: A convex optimization problem has no local
minima other than the global minimum. If a solution is found, itis
guaranteed to be optimal.

* Duality: Convex optimization problems have associated dual
problems that provide bounds on the solution. The Lagrange dual
function plays a crucial role in this.

* Strong Duality: In many convex problems (e.g., if the Slater’s
condition holds), the optimal value of the primal problem equals
the optimal value of the dual problem.
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Lagrange multipliers to handle constraints

* The Lagrangian function combines the objective function with the
constraints using multipliers.

* Example: maxxy,s.t.x +y =c¢

* Solution 1: use y = ¢ — x, then objective problemismaxx(c — x),sox =
y = c¢/2 isthe optimal solution.
* Solution 2 (Lagrange multiplier):
e L(x,y,A)=xy—A(x+y — )
+ Differentiate with regards to x and y,we havex =y =4

* Note xy is neither convex or concave, so only with constraint it has a
solution
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Equality constrained problem

e min f(x,y) = x? + 2y?

est.x+y=1

23



Equality constrained problem

e min f(x,y) = x% + 2y% — 2

est.x+y=1
Introduce Lagrangian multiplier 4 and form

« Solution: Ly, A) =x*+2y° =2 —A(x+y—1)

Then, differentiate with respect to x, y, 1 : and set derivative to 0.

oL
—=2x—1=0 = 1=2x ) /1_4
dx =3
oL
ay X = 3
oL _ 1=0 = 1 1
ﬁ——x—y+ = —x—y+ —0/ y=§



Equality constrained problem in matrix

e min, f (x) —ExTAx+bTx+c s.t.Dx=-¢e

. Introduce Lagrangian multiplier v and form
Lagrangian L(x, v) = f(x) — v (Dx —e)

- Optimal solution given at the stationary point of L

6L =p + Ax — D7v =0 (dual feasibility)

aL
ov

- Solution: solving the KKT equation

(5 §)0=(2)

=Dx—e=0 (primal feasibility)
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Previous example
Rewrite the problem: Let x; =x,x, =y

min f(x;,%;) = %%+ 2x,° = 2,s.t. x +y =1

007 F i
> *ﬁ% /
ANt

\ \k
AN
K L
b’
QAL T

f= (g NE)+Q)G) -2
so.4=( 9)b=(() =2 D (5) =

SO'D = (1)1);6 — 1

Solution given by (g —gT) (i}c) _ (—eb)

2 0 -1 X 0
That is, (0 4 —1) ()’) = (O)
1 1 0 v 1
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