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Announcement

* Office hours:
* |nstructor: Tue 1:30-2:30pm @ HU 25
* TA: Wed 1:30-2:30pm @ HU 25
e Starting next week

* Enrollin Gradescope!
* Entry code: EV6862
* All homework via Gradescope

* No participation score today
* Starting next week
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* Project list will be released next Tuesday



Today’s agenda

* Key objects:
e \Vector, matrix

* Operations:
* Matrix-vector multiplication, matrix-matrix multiplication

* Properties vectors:

* Norm (one vector), distance and angle (two vectors), linear
(in)dependence, orthogonality (a “bag” of vectors)

* Properties of a matrix:
* Rank, trace, determinant, symmetric, invertible

* Eigenvalues and eigenvectors



Vector and matrix

* Geometric meaning of a vector: N (a1,2) |
* An arrow pointing from O . a—= 2] eRr?
* Apointin acoordinate system 3
a, ™
* Matrix is a “bag” of vectors.
* n-column vectors or m-row vectors.
[a11 apo leln-
Q21 Q22 - Qap
A= . : .| a; €R.
| Am1 Am2 " Qmp




Norms are “metrics”. A few useful properties:

Generally, a vector norm is a mapping R — R, with the
properties

@ ||z|| >0, forall z

@ ||z||=0,ifandonly ifz =0

® |[az|| = |af|z]], « € R

@ ||z +yl| < ||z|| + ||y, for all z and y




lp-norm IS the most used vector norm

* Definition: n L/p
1x]|p = (Z z; Ip)
=1

* Different norms: .
* Whenp = 1, [;-norm, Taxicab norm, Manhattan norm l[z[[1 := pNES
1=1

* Whenp = 2, [,-norm, Euclidean norm, quardratic norm, square norm
* In literature, ||x|| usually denotes Euclidean norm

|2 = /2 + - + 2

* Whenp — o, [-norm
oo += max ]



In-class exercise

* Find [;-norm, l,-norm, l-norm of vector x = [1,2,3,4, —5].

« Answer: 15,55, 5.



Properties of two vectors

* What can you do with them?

* Add
cz=x+1+Yy
« [5,6,—2] =[1,3,5] + [4,3,—7]

* Subtract
*g=x-y
- [-3,0,12] = [1,3,5] — [4,3, 7]

* Weighted combination / linear combination
* h=x+2y
* [9,10,—-9] = [1,3,5] + 2 * [4,3, —7]



Relationship (similarity) of two vectors

* Direction * Angle

* Dot product/inner product
c (x,y) =x"y =3 Xy

¢ 0 = cos‘l( x.7) )

/\\y:"\\/ iyl

Two vectors are orthogonal (perpendicular to each other) iff their dot-product is 0.



Three interpretations of matrix-vector
Multiplication

* Interpretation 1: “Projecting x to m-directions”
* Treat matrix Ais as a “bag” of row-vectors

 Aisam byn matrix
e x iIs an-dimensional vector

'Ax‘[ 1 4 3][ ] [24

* Projecting x from 3 dimensions to 2 dimensions.
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Three interpretations of Matrix-Vector
Multiplication

* Interpretation 2: “Weighted linear combination of column vectors”
* Treat matrix Ais as a “bag” of column-vectors

 Aisam byn matrix
e x iIs an-dimensional vector

'Ax‘[ 1 4 3][ ] [24

* The weight of column 1is4
* The weight of column 2 is -1
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input vector x”
that takes a vector
R"™ — R™

lon of
ion

transformat
“operator” or a “funct
A

inear

“Al
IS as an
t and output another vector”

inpu

* Interpretation 3
* Treat matrix A

Three interpretations of matrix-vector

Multiplication
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Projection

RS S

4 5 projection onto a line containing unit vector @ is T(%) = (7 - @)d with matrix A =
Uy Uty
U Uy  Ugly
Projections are also important in statistics. Projections are not invertible except if we project
onto the entire space. Projections also have the property that P> = P. If we do it twice, it
is the same transformation. If we combine a projection with a dilation, we get a rotation
dilation.

Rotation

A =
A |oH |oH klvklv oﬁpv —sin(a)
5 sin(a)  cos(a)

Any rotation has the form of the matrix to the right.
Rotations are examples of orthogonal transformations. If we combine a rotation with a dilation,

She
aar transformations

TR

ngeneral, shears ave transformation in the plane with the property that there s a vector 1 such
hat ﬁ@ = and T(7) - #is a multiple of & for all 7. Shear transformations are fnvertible
ind are important in general because they are examples which can not be diagonalized.

Scaling transformations

K [0 12 0
2 01 *‘ =1 1/

(

S

"

i L . -
Jne f also look at transformations which scale ¢ differently then y and where A s a diagonal
natrix. Scaling transformations can also be written as A = Ay where Iy Is the identity matrix.
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b) The smiley face visible to the right is transformed with various linear
transformations represented by matrices A — F. Find out which matrix
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does which transformation;

| to a new locat

| -1] 12 1 0]
Sl E ) Eia
I -1] -1 0 01
O =l B o] B )
= A-F image A-F image A-F image

map each p

ISE

In-class exerc




Matrix-Matrix multiplication

@ Let A € R™*P and B € RP*™, Then,
C = AB = (¢;;) € R™*" is defined as follows:

p

Cij :Zaikbkja foralli=1,--- ,m,5=1,--- ,n.

k=1

* Key things to remember
* Dimension check!

* Properties of a scalar-scalar multiplications
are still valid for matrix-matrix multiplication
* Commutative law: AB=BA?
* Associative law: (AB)C=A(BC)?
* Distributive law: A(B+C)=AB+BC?

%VhiCh ones
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Examples of matrix-matrix multiplication

* Inner product and outer product of two vectors

Uy U1V UIV2  UIV3
T U2 UaV1 UV2 UV3
uv=uv = (v ve w3 =

us U3v1 U3V2 UIV3

Uy U4V1  U4V2  U4V3

* Page rank (mathematics behind Google Search)
* https://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Input layer Output layer

A simple neural network

* Neural networks
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Computational Complexity of matrix
Multiplication?

* How many dot product needed? (Ais m by nand B is n by p)
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Fun fact: complexity of matrix multiplication

Is still an open problem

* 2 by 2 matrix multiplication

* Naive algorithm takes 8
multiplication

e Strassen showed that one
can get away with 7

* Divide and conquer gives
0(n10g27) ~ 0(n2.807)

* Improves over 0(n?) for
reasonable sized matrices

* Actually used in practice!

Year
1969
1978
1979
1981
1981
1981
1986
1990
2010
2013
2014
2020
2022
2023

Bound on omega

2.8074
2.796
2.780
2.522
2.517
2.496
2.479
2.3755
2.3737
2.3729
2.3728639
2.3728596
2.371866
2.371552

Timeline of matrix multiplication exponent

Authors

Strassen(]

Panl1]

Bini, Capovani [it], Romanil'2]

Schénhagel!3!

Romanil14]

Coppersmith, Winograd!'!

Strassen( '€l

Coppersmith, Winograd!'”]
Stothers('él
Williams!191(20]
Le Galll?]
Alman, Williams(®1(22]
Duan, Wu, Zhou!®!

Williams, Xu, Xu, and Zhou!!

Best lower bound is still Q(n?log n)
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Properties of a bag of vectors: linear
Independence

Important to consider for machine learning algorithm design

@ Given a set of vectors {v1,vo,--- ,v,} € R™, with m > n,
consider the set of linear combinations y = > °>_; a;v; for
arbitrary coefficients «;’s.

@ The vectors {v;,v9,--- ,v,} are linearly independent, if
> i—1oyv; =0, ifandonlyif o; =0forall j=1,--- ,n.

@ Implication: if a set of vectors are linearly dependent, then
one of them can be written as a linear combination of the
others
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In-class exercise: linear independence

Are these vectors linear dependent?

()6

Yes, because that 2v; + v9 — v3 = 0. Or equivalently,
vy = 2v1 + v9.
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Discussion: are these vectors linearly
Independent?

j\ - e —
) \
\



When they are linearly independent, we call this
“bag” of vectors a basis. A basis of size m spans
an m-dimensional vector space.

@ A set of m linearly independent vectors of R™ is called a
basis in R™: any vector in R™ can be expressed as a
linear combination of the basis vectors.

\‘
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Properties of basis

* Vectors in a basis are mutually orthogonal

* Dot product of any two of them is O.

A<

g1 =

g3 =
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Properties of a matrix

* General matrix
* Rank: max number of independent column vectors / row vectors
* Transpose: switch rows and columns

A € RMXn AT c R™XM Invertible matrix
A7tA=1T

Orthogonal matrix

e Square matrix
* Trace: Sum of diagonal elements

—1 AT
e Determinant: A=A
‘{ i Symmetric matrix
5 det(a b)— @ b‘—adbc AT:A
ANIN2| [ =5-14+7=11. e d) e dl”
_—3 8 ?/_,3’
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Eigenvalues and eigenvectors of a (square) matrix

Let A be a n x n matrix. The vector v # 0 that satisfies
Av = v

for some scalar ) is called the eigenvector of A and A is the
eigenvalue corresponding to the eigenvector v.

@ A is symmetric, then )\ € R.
@ A is symmetric and positive semi-definite, then XA > 0
© A is symmetric and positive definite, then A > 0
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Positive (semi)-definite matrix

Very important property for optimization, kernel methods

@ A symmetric matrix A € R™*" is positive semi-definite, if
and only if I’ Az > 0, for any = € R".
e All eigenvalues of A are non-negative.
@ XTAX forany X € R™*™ is positive semi-definite.

@ A symmetric matrix A € R™*™ is positive definite, if and
only if zT' Az > 0, for any 0 # z € R™.
e All eigenvalues of A are positive.
e All diagonal entries of A are positive.
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