

CSI 401 (Fall 2025) Numerical Methods

Lecture 2: Asymptotic Notations & Machine Arithmetic

Chong Liu

Department of Computer Science

Aug 25, 2025

Agenda

Asymptotic notations

- Machine arithmetic
 - Decimal and binary expansions
 - Scientific notation

Asymptotic notations

• Used to compare the growth of two functions f(x) and g(x) as x tends to some limit point x_0 .

• Discussion:

• $f(x) = x^2$, g(x) = x. Which notation shall we use?

To do this, we look at the absolute value of the ratio of the two:

$$\left| \frac{f(x)}{g(x)} \right|. \tag{2.6}$$

The behavior of this can be one of three different things as $x \to x_0$:

•

$$\left| \frac{f(x)}{g(x)} \right| \to 0. \tag{2.7}$$

In this case, we say that f(x) is asymptotically negligible compared to g(x). We also say that f(x) = o(g(x)) (i.e., "f(x) is small 'oh' of g(x)") as $x \to x_0$.

•

$$\left| \frac{f(x)}{g(x)} \right| \tag{2.8}$$

converges to a positive constant or oscillates but stays bounded.

•

$$\left| \frac{f(x)}{g(x)} \right| \to \infty. \tag{2.9}$$

In this case, we say that f(x) is asymptotically dominant compared to g(x). This implies that g(x) = o(f(x)).

Asymptotic notations

- Additionally, we say that f(x) = O(g(x)) as $x \to x_0$ if there is some positive constant C such that
- $\left| \frac{f(x)}{g(x)} \right| \leqslant C$.
- Thus, the $O(\cdot)$ notation means that f(x) is asymptotically upper bounded by g(x).
- We also say that $f(x) = \Omega(g(x))$ if g(x) = O(f(x)).
- We say that $f(x) = \Theta(g(x))$ if f(x) = O(g(x)) and $f(x) = \Omega(g(x))$.

Properties of asymptotic notations

Theorem 3.2 (Properties of asymptotic notations). Let C > 0 be some positive constant, and let $x_0 \in \mathbb{R} \cup \{\pm \infty\}$. Then, for any function g(x), as $x \to x_0$,

$$C \cdot O(g(x)) = O(g(x)) \tag{3.1}$$

$$C \cdot \Theta(g(x)) = \Theta(g(x)) \tag{3.2}$$

$$C \cdot \Omega(g(x)) = \Omega(g(x)) \tag{3.3}$$

$$C \cdot o(g(x)) = o(g(x)). \tag{3.4}$$

Additionally, for any f(x)

$$f(x)O(g(x)) = O(f(x)g(x)). (3.5)$$

- The above theorem allows us to simplify expressions asymptotically. E.g., as $x \to \infty$
- $4e^{x}(\sin(x) + 5) + 3x = \Theta(e^{x}(\sin(x) + 5)) = \Theta(e^{x}),$
- where the first equality is because $x = o(e^x \sin(x))$, and the second equality is because $0 \le |\sin(x)| \le 1$.
- Note that all of this can be verified by looking at ratios of functions, as in the definition of the notation.

Properties of polynomials

Corollary 3.4. As $x \to \infty$, for any fixed k, nonzero constant c_k , and constants (possibly 0) c_j for $j \in \{0, 1, ..., k-1\}$,

$$P(x) = c_k x^k + c_{k-1} x^{k-1} + \dots + c_1 x + c_0 = \Theta(x^k).$$
(3.8)

As $x \to 0$, if j is the smallest number for which $c_j \neq 0$,

$$P(x) = \Theta(x^j). \tag{3.9}$$

Let us consider the following question: suppose $f(x) = \Theta(g(x))$. Is it true in general that $f(x) - g(x) = \Theta(g(x))$? **NO**. For instance,

$$f(x) = 3x, g(x) = 3x + 5 \implies f(x) - g(x) = -5 = o(g(x)). \tag{3.10}$$

In-class exercise of asymptotic notations

- Identify the asymptotic relationship: For each pair of functions f(n) and g(n), determine whether
 - f(n) = O(g(n)),
 - $f(n) = \Omega(g(n)),$
 - $f(n) = \Theta(g(n))$,
 - or none of the above.

1.
$$f(n) = 3n^2 + 5n$$
, $g(n) = n^2$
2. $f(n) = \log(n^2)$, $g(n) = \log(n)$
3. $f(n) = n^{1.01}$, $g(n) = n \log n$
4. $f(n) = 2^n$, $g(n) = n^{100}$

Solutions

- $1.3n^2 + 5n \text{ vs } n^2 : \Theta(n^2)$
- $2.\log(n^2)$ vs $\log n : \Theta(\log n)$
- $3.n^{1.01} \text{ vs } n \log n$:
- 4. vs n^{100} : $\Omega(n^{100})$

In-class exercise of asymptotic notations

- Arrange the following functions in increasing order of asymptotic growth rate (ignore constants):
- n, $\log n$, $n \log n$, 2^n , n^3 , \sqrt{n} , n!

Solution:

• $\log n < \sqrt{n} < n < n \log n < n^3 < 2^n < n!$

Computational Complexity of matrix Multiplication?

How many dot product needed? (A is m by n and B is n by p)

Fun fact: complexity of matrix multiplication is still an open problem

- 2 by 2 matrix multiplication
 - Naïve algorithm takes 8 multiplication
 - Strassen showed that one can get away with 7
- Divide and conquer gives $O(n^{\log_2 7}) \approx O(n^{2.807})$
 - Improves over $O(n^3)$ for reasonable sized matrices

Actually used in practice!

Timeline of matrix multiplication exponent

Year	Bound on omega	Authors
1969	2.8074	Strassen ^[1]
1978	2.796	Pan ^[11]
1979	2.780	Bini, Capovani [it], Romani ^[12]
1981	2.522	Schönhage ^[13]
1981	2.517	Romani ^[14]
1981	2.496	Coppersmith, Winograd ^[15]
1986	2.479	Strassen ^[16]
1990	2.3755	Coppersmith, Winograd ^[17]
2010	2.3737	Stothers ^[18]
2013	2.3729	Williams ^{[19][20]}
2014	2.3728639	Le Gall ^[21]
2020	2.3728596	Alman, Williams ^{[6][22]}
2022	2.371866	Duan, Wu, Zhou ^[3]
2023	2.371552	Williams, Xu, Xu, and Zhou ^[2]

Machine arithmetic - Decimal expansion

• Take 316.1415 for example:

$$316.1415 = 3 \cdot 10^2 + 1 \cdot 10^1 + 6 \cdot 10^0 + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3} + 5 \cdot 10^{-4}.$$

Any real number x can be written as

$$x = \pm \sum_{j=-\infty}^{\infty} d_j \cdot 10^j$$

• In-class exercise: Decimal expansions for (1) -2, (2) π .

Machine arithmetic - Binary expansion

• Similar to decimal expansion, every real number x has a binary (i.e., base B = 2) expansion:

$$x = \pm \sum_{j = -\infty}^{\infty} b_j \cdot 2^j$$

• In class exercise: consider a number $x = -(1011.01)_2$, what's the binary expansion of it?

$$x = -(1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2})$$

Decimal to binary conversion

• Every number has a decimal and a binary expansion. Given a decimal expansion for a number x, how do we determine its binary expansion?

- We set y = x and repeatedly do the following:
- 1. Compute the maximum integer j such that $y \ge 2^j$.
- 2. Output *j*.
- 3. Compute $y = y 2^j$ and go to step 1.
- The algorithm terminates when y = 0.

Conversion example of x=3.25

- We set y = x and repeatedly do the following:
- 1. Compute the maximum integer j such that $y \ge 2^j$.
- 2. Output *j*.
- 3. Compute $y = y 2^j$ and go to step 1.
- The algorithm terminates when y = 0.
 - 1. y = 3.25. j = 1, since $3.25 \ge 2^1$, but $3.25 < 2^2$. So output 1.
 - 2. $y = 3.25 2^1 = 1.25$. j = 0, since $1.25 \ge 2^0$ but less than 2^1 . So output 0.
 - 3. $y = 1.25 2^0 = 0.25$. j = -2, since $0.25 = 2^{-2}$. So output -2.
 - 4. y = 0, so stop.

This shows that

$$x = (3.25)_{10} = (11.01)_2.$$

Conversion example of x=0.10

- We set y = x and repeatedly do the following:
- 1. Compute the maximum integer j such that $y \ge 2^j$.
- 2. Output *j*.
- 3. Compute $y = y 2^j$ and go to step 1.
- The algorithm terminates when y = 0.
 - 1. y = 0.10. j = -4, since $0.10 \ge 2^{-4}$ but less than $2^{-3} = 0.125$. So output -4.
 - 2. $y = 0.10 2^{-4} = 0.0375$. j = -5, since $0.0375 \ge 2^{-5} = 0.03125$. So output -5.
 - 3. y = 0.0375 0.03125 = 0.00625. j = -8, since $0.00625 \geqslant 2^{-8} = 0.00390625$. So output -8.

We can keep doing this, and the process never terminates. We get

$$x = (0.10)_{10} = (0.0001100110011...)_2.$$
 (5.8)

In-class exercise: Conversion of x=4.125

- We set y = x and repeatedly do the following:
- 1. Compute the maximum integer j such that $y \ge 2^j$.
- 2. Output *j*.
- 3. Compute $y = y 2^j$ and go to step 1.
- The algorithm terminates when y = 0.

• Solution: $4.125_{10} = 100.001_2$

Scientific notation

- Our ultimate goal: come up with a reasonable binary representation of numbers, suitable for storage and manipulation on a computer.
 - Why not just store the binary expansion? The trouble with this is that large numbers can take up a lot more space than smaller numbers, even if they don't have many nonzero digits.
- For instance, consider the following very large number (Avogadro's constant) that arises in chemistry:

How can we store this number in a compact way?

Scientific notation

Recall how scientific notation works. In decimal, we can write any real number other than 0 as

$$x = \pm m \times 10^E, \tag{5.12}$$

for a unique **mantissa** m and exponent E, with $1 \le m < 10$ and E some integer. For example, consider the number 314.159. In scientific notation, this is written as

$$3.14159 \times 10^2. \tag{5.13}$$

In the same fashion, a number can be written in base 2 scientific notation: it takes the form

$$x = \pm m \times 2^E, \tag{5.14}$$

where this time $1 \le m < 2$. For instance, consider the number 3.25. We converted this to binary to get $(11.01)_2$. In scientific notation, this becomes

$$(1.101)_2 \times 2^1. \tag{5.15}$$

• In-class exercise: scientific notations of 4125, 40.125, 4.125

What's next?

- Mon Sep 1 NO CLASS
 - Due to Labor Day
 - No Instructor's office hour either
 - But HW 1 will be released, based on Lecture 1, 2, 3
- Mon Sep 8 TA review sessions
 - First session: Lecture 3: Review of Linear Algebra
 - Second session: Tutorials of Matlab/Python/LaTeX
 - Study group registration due and Course project registration due