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Agenda

* Asymptotic notations

e Machine arithmetic
* Decimal and binary expansions
e Scientific notation



Asymptotic notations

* Used to compare
the growth of two
functions f(x) and
g(x) as x tends to
some limit point x.

e Discussion:

c flx) =x%,g(x) =x.

Which notation
shall we use?

To do this, we look at the absolute value of the ratio of the two:

f@)| (26)
g(z)
The behavior of this can be one of three different things as x — zg:
]
/(@) — 0. (2.7)
g(z)

In this case, we say that f(z) is asymptotically negligible compared to g(z). We also say that
f(x) = o(g(z)) (i-e., “f(z) is small ‘oh’ of g(z)”) as x — zo.

g(x)
converges to a positive constant or oscillates but stays bounded.
®
f(@) — 0. (2.9)
g(z)

In this case, we say that f(x) is asymptotically dominant compared to g(z). This implies

that g(z) = o(f(z)).




Asymptotic notations

* Additionally, we saythat f(x) = 0(g(x)) asx — x; ifthereis
some positive constant C such that

f(x)
g(x) <

* Thus, the O(-) notation means that f (x) is asymptotically upper
bounded by g(x).

* We also say that f(x) = Q(g(x)) if g(x) = O(f (x)).

* We say that f(x) = 0(g(x)) if f (x) = 0(g(x)) and f (x) =
Q(g(x)).



Properties of asymptotic notations

Theorem 3.2 (Properties of asymptotic notations). Let C > 0 be some positive constant, and let
xo € RU{toc}. Then, for any function g(x), as ¢ — x,
C-O(g(z)) = O(g(x)) (3.1)
C-B(g(z)) = O(g(x) (3.2)
C-Q(g(z)) = Qg(z)) (3.3)
C-o(g(z)) = o(g(z)) (3.4)
Additionally, for any f(x)
f(2)O(g(z)) = O(f(z)g(x)). (3.5)

* The above theorem allows us to simplify expressions asymptotically. E.g., as
X = 00

* 4e*(sin(x) + 5) + 3x = O(e*(sin(x) + 5)) = O(e%),

* where the first equality is because x = o(e*sin(x)), and the second equality
is because 0 < [sin(x)| < 1.

* Note that all of this can be verified by looking at ratios of functions, as in the
definition of the notation.



Properties of polynomials

Corollary 3.4. As x — oo, for any fized k, nonzero constant cx, and constants (possibly 0) c; for
j€{0,1,...,k — 1},

P(z) = cpx® + cp_12" 7t + ...+ c1z + o = O(zF). (3.8)
Asx — 0, if 5 is the smallest number for which c; # 0,

P(z) = O(z9). (3.9)

Let us consider the following question: suppose f(z) = ©(g(x)). Is it true in general that f(z) —
g(x) = O(g(x))? NO. For instance,

f(x) =3x,9(x) =3x+5 = f(z) —g(x) =—-5=o(g(x)). (3.10)




In-class exercise of asymptotic notations

* |dentify the asymptotic relationship:
For each pair of functions f(n) and

g(n) ,determine whether Solutions
- f(n) =0(gn)), 1.3n% + 5nvsn? :0(n?)
- f(n) = Q(g), 2.1og(n?) vslogn :0(logn)
* f(n) = 0(g(n)), 3. nt%vsnlogn :
* or none of the above. 4. vs n1Y0 :Q(n1%9

1.f(n) = 3n* + 5n ,g(n) = n?
2.f(n) =log(n*), g(n) = log(n)
3. f(n) =ntO g(n) =nlogn
4.f(n) = 2" ,g(n) = n1o



In-class exercise of asymptotic notations

* Arrange the following functions in increasing order of asymptotic
growth rate (ignore constants):

*n,logn,nlogn, 2™, n3,n,n!

* Solution:
clogn < vn < n < nlogn < n? < 2™ <n!



Computational Complexity of matrix
Multiplication?

* How many dot product needed? (Ais m by nand B is n by p)



Fun fact: complexity of matrix multiplication

Is still an open problem

* 2 by 2 matrix multiplication

* Naive algorithm takes 8
multiplication

 Strassen showed that one
can get away with 7

* Divide and conquer gives
O(nlog27) ~ 0(112'807)

* Improves over 0(n?) for
reasonable sized matrices

* Actually used in practice!

Year
1969
1978
1979
1981
1981
1981
1986
1990
2010
2013
2014
2020
2022
2023

Bound on omega

2.8074
2.796
2.780
2.522
2.517
2.496
2.479
2.3755
2.3737
2.3729
2.3728639
2.3728596
2.371866
2.371552

Timeline of matrix multiplication exponent

Authors

Strassen(]

Panl1l]

Bini, Capovani [it], Romanil'2]

Schénhagel!3!

Romanil14]

Coppersmith, Winograd!'!

Strassen( '€l

Coppersmith, Winograd!'”]
Stothers('él
Williams!191(20]
Le Galll?]
Alman, Williams(®1(22]
Duan, Wu, Zhou!®!

Williams, Xu, Xu, and Zhou!?!

Best lower bound is still Q(n?log n)
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Machine arithmetic - Decimal expansion

* Take 316.1415 for example:

316.1415:3-102+1-101+6-100+1-10—1+4-10—2+1-10—3+5-10—4.\

* Any real number x can be written as

T =+ i d; - 10/

j=—00

* In-class exercise: Decimal expansions for (1) -2, (2) .
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Machine arithmetic - Binary expansion

* Similar to decimal expansion, every real number x has a binary
(i.e., base B = 2) expansion:

o0
r — T Z bj . 27
j=—00
e In class exercise: consider a number * = —(1011.01)9 , what’s

the binary expansion of it?

r=—(1-2°+0-2°4+1-2'+1-2°+0-271+1.27%)
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Decimal to binary conversion

* Every number has a decimal and a binary expansion. Given a
decimal expansion for a number x, how do we determine its
binary expansion?

* We sety = x and repeatedly do the following:

* 1. Compute the maximum integer j such thaty > 27,
e 2. Output.

* 3.Compute y = y — 2/ and go to step 1.

* The algorithm terminates when y = 0.

13



Conversion example of x=3.25

We set y = x andrepeatedly do the following:
1. Compute the maximum integer j such thaty > 2/.
2. Output .
3.Compute y = y — 2/ and go to step 1.
The algorithm terminates when y = 0.
1. y=3.25. j =1, since 3.25 > 2!, but 3.25 < 22. So output 1.
2. y=325-21=1.25. j =0, since 1.25 > 29 but less than 2'. So output 0.
3. y=125-20=0.25. j = —2, since 0.25 = 272. So output —2.
4. y =20, so stop.
This shows that

Ir = (3.25)10 = (11.01)2.
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Conversion example of x=0.10

We set y = x andrepeatedly do the following:

1. Compute the maximum integer j such thaty > 2/.
2. Output .

3.Compute y = y — 2/ and go to step 1.

The algorithm terminates when y = 0.
1. y=0.10. j = —4, since 0.10 > 274 but less than 273 = 0.125. So output —4.
2. y=0.10—2"* =0.0375. j = —5, since 0.0375 > 27° = 0.03125. So output —5.
3. y = 0.0375 — 0.03125 = 0.00625. j = —8, since 0.00625 > 27° = 0.00390625. So output —8.

We can keep doing this, and the process never terminates. We get

z = (0.10)10 = (0.0001100110011...)s. (5.8)
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In-class exercise: Conversion of x=4.125

We set y = x andrepeatedly do the following:

1. Compute the maximum integer j such thaty > 2/.
2. Output .
3.Compute y = y — 2/ and go to step 1.

The algorithm terminates when y = 0.

* Solution: 4.125,, = 100.001,
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Scientific notation

* Our ultimate goal: come up with areasonable binary
representation of numbers, suitable for storage and manipulation
on a computer.

* Why not just store the binary expansion? The trouble with this is that large
numbers can take up a lot more space than smaller numbers, even if they
don’t have many nonzero digits.

* For instance, consider the following very large number (Avogadro’s
constant) that arises in chemistry:

602000000000000000000000
* How can we store this number in a compact way?
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Scientific notation

Recall how scientific notation works. In decimal, we can write any real number other than 0 as
z = 4m x 107, (5.12)

for a unique mantissa m and exponent F, with 1 < m < 10 and E some integer. For example,
consider the number 314.159. In scientific notation, this is written as

3.14159 x 102, (5.13)
In the same fashion, a number can be written in base 2 scientific notation: it takes the form
z=4m x 2F, (5.14)

where this time 1 < m < 2. For instance, consider the number 3.25. We converted this to binary
to get (11.01)2. In scientific notation, this becomes

(1.101)5 x 2% (5.15)

* In-class exercise: scientific notations of 4125, 40.125, 4.125
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What’s next?

* Mon Sep 1 - NO CLASS

* Due to Labor Day
* No Instructor’s office hour either
 But HW 1 will be released, based on Lecture 1, 2, 3

* Mon Sep 8 — TA review sessions
* First session: Lecture 3: Review of Linear Algebra
* Second session: Tutorials of Matlab/Python/LaTeX
* Study group registration due and Course project registration due

19
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